KML
不变的svm
这个作者很懒,什么都没留下…
展开
-
学习笔记:机器学习之Learning Nonparametric Kernel Matrices from Pairwise Constraints
graph Laplacian:拉普拉斯矩阵是个非常巧妙的东西,它是描述图的一种矩阵,在降维,分类,聚类等机器学习的领域有很广泛的应用。拉普拉斯矩阵的性质 性质: (1)是半正定矩阵。 (2)的最小特值为0,对应特向为全1列向量。 (3)对有个非负实特征值,. (4)对于任意一个属于实向量,都有此公式成立: 拉普拉斯的应用: 1)拉普拉斯矩阵是一种图的矩阵表...原创 2018-03-30 11:18:14 · 418 阅读 · 0 评论 -
学习笔记:机器学习之支持向量 Sparse kernel learning
核函数分类器一般是主要由权重向量和特征空间构成公式如下:变形为:因而可以看出Nxv的大小影响了分类速率。所以提出了将Nxv优化最小同时,特征空间线性可分而且损失最小.损失如下:所以Sparse kernel learning 主要是建立模型去选取xv向量。可以详见rsvm.参考文献:点击打开链接...原创 2018-03-29 12:20:51 · 667 阅读 · 1 评论 -
学习笔记:Sparse multiple instance learning as document classification
多示例学习中稀疏化是有很多的论文都是在围绕如何选择representation imformation提出很多方法,前面也有提及,但是,本文是针对稀疏数据提出了利用包和示例的结构信息的方法。具体算法如下:本文创新点就是NNrelationships,从而提出了一个representation向量zi。后文将这个算法应用到文本分类中,并提出权重调整策略。算法如下:公式(2)公式(3)总结:我看过一些...原创 2018-05-26 16:59:38 · 452 阅读 · 0 评论 -
学习笔记:Self-Paced Learning
自主学习类似于主动学习(active learning)从未知标签中选取数据加入已知标签训练,不同的是,主动学习每次选取具有特征最丰富的点,然后将这个点返回到数据库中去查询,得到一个LABEL然后去更新分类器。然而,自主学习起源于课程学习(curriculum learning),它根据学生的学习能力去选取课程,因而自主学习每次选取最简单的特征点集,然后到复杂,每次选取的个数不同,这样训练的好处就...原创 2018-06-03 10:52:48 · 3972 阅读 · 0 评论