多示例学习在图像处理的应用
文章平均质量分 81
不变的svm
这个作者很懒,什么都没留下…
展开
-
学习笔记:Salient Object Detection via Multiple Instance Learning(一)预备知识
预备知识:目标检测(object detection),要求模型不仅能判断一幅输入图像中包含哪类目标,还得框出目标的具体位置(bounding box)。显著性目标检测:是模拟人的视觉效果,根据人的视觉,提取出人感兴趣的部分,主要有两个过程,自底向上基于特征的数据数据驱动,另一个则是自顶向下的基于高层结构的任务驱动,这两个过程协调工作。由于自顶向下部分涉及生理学,神经学,心里学等诸多学科,且处于初...原创 2018-04-02 10:32:31 · 822 阅读 · 0 评论 -
学习笔记:Salient Object Detection via Multiple Instance Learning(二)
文章用Simple Linear Iterative Clustering(SLIC)算法生成超像素作为示例,本文用区域属性、区域对比度和区域背景等三种特征来表示超像素。SLIC算法:算法大致思想是这样的,将图像从RGB颜色空间转换到CIE-Lab颜色空间,对应每个像素的(L,a,b)颜色值和(x,y)坐标组成一个5维向量V[l, a, b, x, y],两个像素的相似性即可由它们的向量距离来度量...原创 2018-04-03 09:45:33 · 631 阅读 · 0 评论 -
学习笔记:Salient Object Detection via Multiple Instance Learning (三)
作者接着提出了从上面简单的模型到复杂模型的学习。作者首先通过FNCut算法进行选出显著性区域,每个区域作为一个包,在这个区域中的每个超像素作为示例。前面的模型作者用三个尺度来描述没个示例,在该处将区域划分为三个级别,并将它们作为候选包组合在一起。然后应用Otsu生成的多级自适应阈值来标记每个超像素。前z级别的为正示例,后面则为负示例。然后根据候选包是否包含正实例。可以的到正负包Bk(+), Bk(...原创 2018-04-03 15:38:42 · 547 阅读 · 0 评论