题意让这条路径上的最大边权与最小边权比值最小,可以将所有边以边权为键值从大到小排序,然后依次加到邻接表中,这样每次加进去的边的权值可以默认为目前最小边权值,接着跑一遍spfa求目前S到T的最大边权,这样加一条边统计一个答案,最后取一下min。
但是显然O(m^2)代价不可以接受。
我们可以这样考虑:在原图基础上加进一条边,其实只改变和这条边的两个端点相关的部分,所以可以每次加边后只把这条边的两个端点扔进队列里更新答案。这样就相当于一边加边一边跑spfa,最后复杂度约为O(2*m)。
代码蛮好写的,(本蒟蒻都能1A)
献上一份丑陋的代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define N 5005
queue<int>q;
int n,m,tmp,S,T,g[N*2];
struct la{
int a,b,len;
}edge[N];
struct laa{
int c,nxt;
int w;
}e[N*10];
bool cmp(la x,la y){
return x.len>y.len;
}
inline void tu(int x,int y,int w){
e[++tmp].c=y;e[tmp].nxt=g[x];g[x]=tmp;
e[tmp].w=w;
}
bool v[N];
int dis[N];
void spfa(int u,int d){
q.push(u);
q.push(d);
v[u]=1;v[d]=1;
dis[S]=0;
while(!q.empty()){
u=q.front();
q.pop();
for(int i=g[u];i;i=e[i].nxt){
d=e[i].c;
if(dis[d]>max(dis[u],e[i].w)){
dis[d]=max(dis[u],e[i].w);
if(!v[d])v[d]=1,q.push(d);
}
}
v[u]=0;
}
}
double tt,ans;
int ans1,ans2;
int gcd(int x,int y){return y==0?x:gcd(y,x%y);}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&edge[i].a,&edge[i].b,&edge[i].len);
}
scanf("%d%d",&S,&T);
sort(edge+1,edge+m+1,cmp);
ans=0x3f3f3f3f;
memset(dis,0x3f,sizeof(dis));
bool flag=0;
for(int i=1;i<=m;i++){
tu(edge[i].a,edge[i].b,edge[i].len);
tu(edge[i].b,edge[i].a,edge[i].len);
spfa(edge[i].a,edge[i].b);
tt=(double)dis[T]/edge[i].len;
if(dis[T]==0x3f3f3f3f){continue;}
flag=1;
if(tt<ans){
ans1=dis[T];
ans2=edge[i].len;
ans=tt;
}
}
if(!flag){printf("IMPOSSIBLE\n");return 0;}
int k=gcd(ans1,ans2);
if(ans2==k)printf("%d",ans1/ans2);
else printf("%d/%d",ans1/k,ans2/k);
return 0;
}