人工智能(AI)是当今世界最为热门的话题之一,而Python是从事AI领域最为流行的编程语言。在本文中,我将介绍如何使用Python实现自动化办公和处理工资表等知识教程,帮助您从零入门人工智能Python。
一、制作Excel可视化报表
在传统的工作中,人们经常需要重复地执行固定的任务。这些任务一般都很简单,但需要花费大量的时间。使用Python可以帮助我们实现这些任务的自动化。
例如,假如我们需要每周向公司的管理人员汇报销售部门的销售额,并需要从销售系统中下载各个销售员的销售数据,然后根据这些数据生成报告。这个任务需要人工逐一收集销售数据,整理成表格,然后再通过复制和粘贴等方式将数据拼凑在一起。
使用Python可以轻松地完成该任务。Python可以使用pandas包来读取和处理Excel格式的数据。我们可以使用这个库来自动读取和整理需要的数据,并使用matplotlib等其他库来制作可视化报表。
下面是一个简单的例子,用于从一个本地文件夹中读取多个数据文件并将其合并到一个Excel表格中:
import os
import pandas as pd
# 创建一个空的DataFrame表格
result = pd.DataFrame()
# 遍历文件夹中所有的数据文件,将其读取到DataReader中
for file in os.listdir('folder_path'):
data = pd.read_excel(os.path.join('folder_path', file))
result = result.append(data, ignore_index=True)
# 将结果保存到新的Excel文件中
result.to_excel('result.xlsx', index=False)
二、自动化提取表格信息
在处理工资表、财务报表等文件时,往往需要从表格中提取特定的信息。例如,从工资表中计算出员工的绩效奖金等等。
使用Python可以轻松地在表格中提取所需信息。pandas包提供了一系列能够提取表格内容的方法和函数,我们可以使用这些功能轻松地搜索和提取所需的数据。
下面是一个简单的例子,用于从Excel表格中提取特定列的数据:
import pandas as pd
# 读取整张表格
data = pd.read_excel('data.xlsx')
# 提取特定列数据
salary = data['salary']
bonus = data['bonus']
# 计算出所有员工的绩效奖金
performance_bonus = salary * bonus * 0.05
三、详细示例介绍
下面是一个实际的案例,用于提取Google Analytics中的数据并自动生成报告。该报告包含有关网站流量、页面流量、来源等信息。
首先,需要安装Google Analytics API,并使用pandas包将数据保存到Excel表格中。利用matplotlib包制作流量图,并使用邮件库将报告发送给管理人员。
from google.oauth2 import service_account
from googleapiclient.discovery import build
import pandas as pd
import matplotlib.pyplot as plt
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.application import MIMEApplication
from email.mime.text import MIMEText
# 身份验证和授权
service_account_file = 'service_account.json'
credentials = service_account.Credentials.from_service_account_file(service_account_file)
service = build('analyticsreporting', 'v4', credentials=credentials)
# 提取数据并保存到Excel表格中
response = service.reports().batchGet(body={
'reportRequests': [
{
'viewId': 'XXXX',
'dateRanges': [{'startDate': '2022-01-01', 'endDate': '2022-01-31'}],
'metrics': [{'expression': 'ga:users'}, {'expression': 'ga:sessions'}, {'expression': 'ga:bounceRate'}, {'expression': 'ga:goalCompletionsAll'}],
'dimensions': [{'name': 'ga:date'}],
}]
}).execute()
df = pd.json_normalize(response['reports'][0]['data']['rows'])
df.to_excel('report.xlsx')
# 制作流量图
data = pd.read_excel('report.xlsx')
plt.plot(data['ga:date'], data['ga:users'], label='Users')
plt.plot(data['ga:date'], data['ga:sessions'], label='Sessions')
plt.title('Website Traffic in January 2022')
plt.legend()
plt.savefig('traffic.png')
# 发送电子邮件包含报告文件和图片
msg = MIMEMultipart()
msg['From'] = 'example@gmail.com'
msg['To'] = 'manager@example.com'
msg['Subject'] = 'Monthly Report'
body = 'Please find attached the monthly report.'
msg.attach(MIMEText(body))
with open('report.xlsx', 'rb') as f:
attach = MIMEApplication(f.read(), _subtype = 'xlsx')
attach.add_header('Content-Disposition','attachment', filename='report.xlsx')
msg.attach(attach)
with open('traffic.png', 'rb') as f:
attach = MIMEApplication(f.read(), _subtype = 'png')
attach.add_header('Content-Disposition','attachment', filename='traffic.png')
msg.attach(attach)
smtp = smtplib.SMTP('smtp.gmail.com', 587)
smtp.starttls()
smtp.login('example@gmail.com', 'password')
smtp.send_message(msg)
smtp.quit()
在本文中,我介绍了如何使用Python制作Excel可视化报表和处理大量的表格数据等实现自动化办公知识,同时提供了些实际的案例,帮助您更好地理解如何实现工作自动化处理。利用Python工具可以帮助我们节省时间和精力,同时降低错误率和提高工作效率。
知道你对python办公自动化感兴趣,所以给你准备了下面的资料~
这份完整版的Python全套学习资料已经上传,朋友们如果需要可以点击链接免费领取或者滑到最后扫描二v码保证100%免费
】
python学习资源免费分享,保证100%免费!!!
需要的话可以点击这里👉Python学习路线(2023修正版)附涉及资料 (安全链接,放心点击)
文末有福利领取哦~
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、精品Python学习书籍
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、Python练习题
检查学习结果。
七、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取【保证100%免费
】
因链接常被和谐,可戳安全链接:
👉 CSDN2024开年大礼包:《python学习路线&全套学习资料》免费分享