Apache Doris三种数据模型(Aggregate、Uniq、Duplicate)的使用及其注意点

1. key和value

这里的key并不是索引的意思,下面根据情况具体说明:

  • Aggregate数据模型:key为聚合的键,value为聚合的值
  • Uniq数据模型:key为聚合的键,value为聚合的值
  • Duplicate数据模型:key为建表时指定的duplicate key(sorted column,只是用来排序),其余字段为value
  • rollup
    • 作用于Aggregate和Uniq数据模型:key为聚合的键,value为聚合的值
    • 作用于Duplicate数据模型:key为rollup命令添加的字段,且添加的字段都是key

2. 数据模型

数据模型在建表时确定,后续无法修改

2.1 Aggregate数据模型

建表语句如下:

mysql> 
mysql> create table if not exists test_db.aggregate_tb(
    -> user_id largeint not null comment '用户id',
    -> date date not null comment '数据插入日期',
    -> city varchar(20) comment '城市',
    -> age smallint comment '年龄',
    -> sex tinyint comment '性别',
    -> last_visit_date datetime replace default '1970-01-01 00:00:00' comment '用户最后一次访问时间',
    -> cost bigint sum default '0' comment '用户总消费',
    -> max_dwell_time int max default '0' comment '用户最大停留时间',
    -> min_dwell_time int min default '0' comment '用户最小停留时间'
    -> )
    -> aggregate key(user_id, date, city, age, sex)
    -> distributed by hash(user_id) buckets 10
    -> properties('replication_num' = '3');
Query OK, 0 rows affected (0.05 sec)

mysql> 
  • 根据user_id, date, city, age, sex这5个key进行数据的聚合
  • replace表示取最后一个insert的数据;但在同一个insert中如果包含多条数据,会随机取一条
  • replace_if_not_null:和replace类似,区别在于如果insert的是null,则不进行替换
  • 数据聚合分为3个阶段
    1. 数据insert时,会对同一个insert批次的数据进行聚合
    2. BE进行Compaction时,会对不同insert批次的数据进行聚合
    3. 用户进行查询时,在BE后端可能不同insert批次的数据未进行聚合,此时会对符合查询条件的数据进行内部聚合(不用用户调用group by,会扫描所有列的数据)后,再返回给客户端
  • 所有的key列必须在value列之前

2.2 uniq数据模型

建表语句如下:

mysql> 
mysql> create table if not exists test_db.uniq_tb(
    -> user_id largeint not null comment '用户id',
    -> username varchar(50) not null comment '用户名',
    -> city varchar(20) comment '城市',
    -> age smallint comment '年龄',
    -> sex tinyint comment '性别',
    -> phone largeint comment '电话',
    -> address varchar(500) comment '地址',
    -> register_time datetime comment '注册时间'
    -> )
    -> unique key(user_id, username)
    -> distributed by hash(user_id) buckets 10
    -> properties('replication_num' = '3');
Query OK, 0 rows affected (0.05 sec)

mysql> 
  • uniq数据模型其实是Aggregate数据模型的一种特列
  • 根据user_id, username这2个key进行数据的聚合,其余字段按replace方式进行聚合

2.3 Duplicate数据模型

建表语句如下:

mysql> 
mysql> create table if not exists test_db.duplicate_tb(
    -> timestamp datetime not null comment '日志时间',
    -> type int not null comment '日志类型',
    -> error_code int comment '错误码',
    -> error_msg varchar(1024) comment '错误详细信息',
    -> op_id bigint comment '负责人id',
    -> op_time datetime comment '处理时间'
    -> )
    -> duplicate key(timestamp, type)
    -> distributed by hash(op_id) buckets 10
    -> properties('replication_num' = '3');
Query OK, 0 rows affected (0.05 sec)

mysql> 
  • 数据不会发生内部聚合,插入多少条数据,查询就会返回多少条数据
  • duplicate key只是指定了timestamp和type两个sorted column, 用于数据排序,并不能作为数据唯一的标识

3. Aggregate/Uniq数据模型的局限性

count的局限性:查询select count(user_id) from test_db.aggregate_tb;得到的是user_id去重后的计数值;查询select count(*) from test_db.aggregate_tb;得到的是表聚合后,再进行计数的值。而不是表聚合前的计数值

Apache Doris可以使用多种索引来提高查询性能和数据存储效率。其中包括Aggregate(Uniq表同理)添加rollup、Duplicate表添加rollup、key和前缀索引、Bloom Filter索引和Bitmap索引等。\[1\]\[2\]\[3\] 在Apache Doris中,可以通过在Aggregate表或Uniq表上添加rollup来创建索引。这样可以提高查询性能和聚合操作的效率。 Duplicate表也可以添加rollup来创建索引,这样可以提高查询性能和去重操作的效率。 另外,Apache Doris还支持key和前缀索引。通过创建key和前缀索引,可以提高查询命中前缀索引的规则,从而提高查询性能。 对于高基数的列,比如UserID,可以使用Bloom Filter索引。Bloom Filter索引适合在高基数的列上创建,因为它可以快速判断某个值是否存在于索引中。 而对于低基数的列,比如"性别"列,使用Bloom Filter索引可能失去意义,因为每个Block几乎都会包含所有取值。 此外,Apache Doris还支持Bitmap索引。Bitmap索引占用的空间非常小,创建和使用非常快。当根据键值查询时,可以快速定位到具体的行号。而当根据键值做and/or或in(x,y,..)查询时,可以直接使用索引的位图进行或运算,快速得出结果行数据。 综上所述,Apache Doris提供了多种索引类型,可以根据具体的需求选择合适的索引来提高查询性能和数据存储效率。 #### 引用[.reference_title] - *1* [Apache Doris的Rollup和前缀索引](https://blog.csdn.net/yy8623977/article/details/120929403)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Apache doris索引机制介绍](https://blog.csdn.net/hf200012/article/details/119272670)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值