动态规划思想以及最大回文串搜索

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/yy90163/article/details/80351683

动态规划

动态规划思想应用于这样的一种情况:比如你发现你需要寻找x问题的最优解,然后x的最优解基于x的子问题的最优解;或者你发现在一次问题的解决过程中,你需要不断地解决同样的子问题。那么动态规划就可以派上用场。鉴于我在学习的过程中,重复了大量前辈们实现过的算法,我只在这里谈一谈我自己写的一个最大回文串搜索算法。

最大回文串搜索

回文串的定义就是一个字符串和他的倒序字符串一摸一样。
例如character里的最大回文串就是carac。(子串并不一定是一个在原子符串中连续的字符串)
我考虑一个串的头尾两端。假设存在一个字符串A[i,i+1,i+2…,j-1,j],他的最大回文串长度为x。那么分两种情况讨论。

  1. A[i]==A[j] 也就是说,A[i]和A[j]一定是A的最大回文串中的两个成员。那么我们可以知道,对于A[i..j]的子串A[i+1..j-1],他的最大回文串长度必为x-2。
  2. A[i]!=A[j] 那么我们考虑A[i..j]的两个子串,A[i..j-1]以及A[i+1..j]。稍微思考一下你就知道,x必然是A[i..j-1]的最大回文串和A[i+1..j]的最大回文串中更长的那个。

所以,我们现在有了一个最基础的递归式。
那么有了这个递归式..很明显可以应用动态规划思想。再bottom-up地考虑这个问题,考虑A所有的连续子串(从短到长),你就可以很容易地解决。
最大回文串

阅读更多

没有更多推荐了,返回首页