- 矩阵秩的几何意义,这个概念具体有什么用
秩主要是用来描述行(列)向量组所含向量的“真正”个数,知道了秩是多少,也就知道了最少用多少个向量就能表示这个向量组 - 先验概率和后验概率
- 似然和概率的区别
- 矩阵的特征值和特征向量
- 什么是伯努利分布
x x x 的取值为 0 / 1 0/1 0/1, x x x 以 p p p 的概率为 1 1 1, ( 1 − p ) (1-p) (1−p) 的概率为0。发生事件 x x x 的概率
P ( x ) = p x ( 1 − p ) ( 1 − x ) P(x) = p^x (1-p)^{(1-x)} P(x)=px(1−p)(1−x)
它的期望为 E ( x ) = 1 × p + 0 × ( 1 − p ) = p E(x) = 1 \times p + 0 \times (1-p) = p E(x)=1×p+0×(1−p)=p
记为 X ∼ B ( 1 , p ) X\sim B(1, p) X∼B(1,p) - 什么是二项分布
进行 n n n 次伯努利实验,其中有 k k k 次实验结果为 1 1 1 的概率
P ( x ) = C n x p x ( 1 − p ) ( n − x ) = n ! x ! ( n − x ) ! p x ( 1 − p ) ( n − x ) P(x) = C_n^xp^x(1-p)^{(n-x)}=\frac{n!}{x!(n-x)!}p^x(1-p)^{(n-x)} P(x)=Cnxpx(1−p)(n−x)=x!(n−x)!n!px(1−p)(n−x)
记为 X ∼ B ( n , p ) X\sim B(n, p) X∼B(n,p) - 什么是几何分布
在 n n n 次伯努利试验中,试验 k k k 次才得到第一次成功的机率。详细地说,是前 k − 1 k-1 k−1 次皆失败,第 k k k 次成功的概率
P ( x = k ) = ( 1 − p ) ( k − 1 ) p P(x=k)=(1-p)^{(k-1)}p P(x=k)=(1−p)(k−1)p
记为 X ∼ G E ( p ) X\sim GE(p) X∼GE(p) - 什么是期望
- 如何求解期望
- 导数和偏导的区别
- 标量/向量 /张量/矩阵
- 什么是Hessian矩阵
- 什么是KL散度
KL散度就是相对熵,描述的是随机变量的真实分布和假设分布的拟合程度,拟合程度越高,相对熵越小。
若真实分布与假设分布完全一致,则相对熵为0。具体公式为:
D ( P ∣ ∣ Q ) = ∑ x ∈ X P ( x ) log P ( x ) Q ( x ) , X = x 1 , x 2 , . . . D(P||Q)=\sum_{x\in X} P(x)\log \frac{P(x)}{Q(x)}, \quad X=x_1, x_2, ... D(P∣∣Q)=x∈X∑P(x)logQ(x)P(x),X=x1,x2,...
数学问题 面试复习整理
最新推荐文章于 2023-06-10 15:49:06 发布