数学问题 面试复习整理

其他面试整理在这里

  1. 矩阵秩的几何意义,这个概念具体有什么用
    秩主要是用来描述行(列)向量组所含向量的“真正”个数,知道了秩是多少,也就知道了最少用多少个向量就能表示这个向量组
  2. 先验概率和后验概率
  3. 似然和概率的区别
  4. 矩阵的特征值和特征向量
  5. 什么是伯努利分布
    x x x 的取值为 0 / 1 0/1 0/1 x x x p p p 的概率为 1 1 1 ( 1 − p ) (1-p) (1p) 的概率为0。发生事件 x x x 的概率
    P ( x ) = p x ( 1 − p ) ( 1 − x ) P(x) = p^x (1-p)^{(1-x)} P(x)=px(1p)(1x)
    它的期望为 E ( x ) = 1 × p + 0 × ( 1 − p ) = p E(x) = 1 \times p + 0 \times (1-p) = p E(x)=1×p+0×(1p)=p
    记为 X ∼ B ( 1 , p ) X\sim B(1, p) XB(1,p)
  6. 什么是二项分布
    进行 n n n 次伯努利实验,其中有 k k k 次实验结果为 1 1 1 的概率
    P ( x ) = C n x p x ( 1 − p ) ( n − x ) = n ! x ! ( n − x ) ! p x ( 1 − p ) ( n − x ) P(x) = C_n^xp^x(1-p)^{(n-x)}=\frac{n!}{x!(n-x)!}p^x(1-p)^{(n-x)} P(x)=Cnxpx(1p)(nx)=x!(nx)!n!px(1p)(nx)
    记为 X ∼ B ( n , p ) X\sim B(n, p) XB(n,p)
  7. 什么是几何分布
    n n n 次伯努利试验中,试验 k k k 次才得到第一次成功的机率。详细地说,是前 k − 1 k-1 k1 次皆失败,第 k k k 次成功的概率
    P ( x = k ) = ( 1 − p ) ( k − 1 ) p P(x=k)=(1-p)^{(k-1)}p P(x=k)=(1p)(k1)p
    记为 X ∼ G E ( p ) X\sim GE(p) XGE(p)
  8. 什么是期望
  9. 如何求解期望
  10. 导数和偏导的区别
  11. 标量/向量 /张量/矩阵
  12. 什么是Hessian矩阵
  13. 什么是KL散度
    KL散度就是相对熵,描述的是随机变量的真实分布和假设分布的拟合程度,拟合程度越高,相对熵越小
    若真实分布与假设分布完全一致,则相对熵为0。具体公式为:
    D ( P ∣ ∣ Q ) = ∑ x ∈ X P ( x ) log ⁡ P ( x ) Q ( x ) , X = x 1 , x 2 , . . . D(P||Q)=\sum_{x\in X} P(x)\log \frac{P(x)}{Q(x)}, \quad X=x_1, x_2, ... D(PQ)=xXP(x)logQ(x)P(x),X=x1,x2,...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值