自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(76)
  • 收藏
  • 关注

原创 LangChain v1.0学习笔记(3)—— 核心组件Agents

本文介绍了LangChain v1.0中智能体(Agents)的核心组件与实现方式。智能体通过结合语言模型与工具,构建能够推理任务、动态选择工具并迭代推进解决方案的系统。文章重点讲解了三个核心组件:1) 模型(Model)作为推理引擎,支持静态和动态选择;2) 工具(Tools)赋予执行能力,支持自定义错误处理和ReAct循环;3) 系统提示词(System prompt)用于塑造智能体行为。文中提供了代码示例说明如何使用create_agent构建生产级智能体,包括模型配置、工具定义和中间件实现。智能体遵

2025-12-05 10:10:03 805

原创 LangChain v1.0学习笔记(2)

本节笔记针对 LangChain v1.0 的发展历程以及安装和快速构建一个智能体出发,让我们更深入的了解 LangChain 的各个模块,对它有个大体的认知。

2025-11-21 14:47:01 1005

原创 手把手教你用Rust实现一个现代化的命令行十六进制查看器

本文介绍了使用Rust语言开发现代化终端十六进制查看器的过程。项目充分利用了Rust的内存安全特性和高性能优势,结合clap、ratatui和crossterm等优秀库实现了功能丰富的hex viewer。核心功能包括:十六进制/ASCII双视图展示、键盘导航、搜索功能(支持大小写敏感切换)和美观的TUI界面。文章详细讲解了数据结构设计、界面渲染、键盘事件处理和搜索功能的实现方法,展示了Rust在系统工具开发中的强大表现力。该项目可作为学习Rust实际应用的良好范例。

2025-11-16 16:31:46 22048

原创 GitHub爆火开源项目——RustScan深度拆解

本文将从定位、发展历程、难易程度、核心优势四个维度,深入剖析Rust与C的差异,再通过“贪吃蛇游戏”的实战对比,量化两者在速度、内存、代码量等关键指标的表现,帮助程序员清晰判断“何时该用C,何时该选Rust”,文章较长,全文三万字,耐心看完,希望你能有所收获。

2025-11-14 13:39:49 5337

原创 深入探索RustPython:用Rust构建的Python解释器

本文深度讲解在github上收获20.8k Star的爆火项目---RustPython,文章和一般讲解文章不同,旨在让读者更好的理解 RustPython 的整体架构,所以顺序按概述、核心虚拟机、对象系统、标准库、编译管道、项目组织的结构走,单独读本文可能你并不能很好的理解,但是读过本文之后你在去精读 RustPython 你会发现更容易上手。

2025-11-14 13:34:33 5794

原创 LangChain v1.0学习笔记(1)

本文为在官网学习 LangChain v1.0 文档的笔记,帮助大家在网络不畅,或者官网阅读困难的情况下学习 LangChain v1.0。

2025-11-12 17:44:00 865

原创 深度剖析Figure 03:人形机器人从实验室到量产的技术破壁者

在继Figure 02机器人在特斯拉工厂工作500天后,Figure AI公司有推出了家用场景下的Figure 03机器人,下面我们一起来看看这次推出的Figure 03机器人如何。

2025-11-01 08:19:58 1099

原创 如何在云服务器上使用LLaMA Factory框架微调模型

LLaMA Factory是一款开源低代码大模型微调框架,集成了业界广泛使用的微调技术,支持通过Web UI界面零代码微调大模型。本文以DeepSeek-R1-Distill-Qwen-14B模型为例,介绍如何使用云平台(这里以阿里云平台为例,其他平台区别不大)及LLaMA Factory训练框架,完成模型的中文化微调和评估,以及为评估后的合并和本地模型注册ollama的方法。

2025-09-23 10:13:01 1203

原创 Dify外挂RAGFlow知识库实现精准召回

在AI模型应用编排领域,Dify凭借灵活的工作流设计、友好的交互体验,成为很多人搭建智能应用的首选;而RAGFlow则在文档解析、知识召回的精准度上表现突出。如果能让Dify“借用”RAGFlow的知识库能力,就能实现“强强联合”——既保留Dify的应用构建优势,又拥有RAGFlow可靠的知识检索效果。今天就手把手教你如何操作,让Dify外挂RAGFlow知识库,实现更精准的知识召回。

2025-09-02 17:10:50 1272

原创 Dify Windows 环境下部署全攻略

这是一篇深度安装Dify指南,从零开始教你在本地搭建Dify,保证小白也可以一遍搞定。

2025-09-02 14:59:39 2608 5

原创 Lora与QLora

举一个简单的例子让我们简单的认识一下Lora和QLora:一个130亿参数的大模型,全量微调一次要花上万元,普通开发者根本玩不起。这时候,**LoRA**和**QLoRA**就登场了——它们像给房子“局部改造”,只换关键家具(调整少量参数),既省钱又不破坏原有布局,让普通人也能玩转大模型微调。

2025-08-29 14:50:39 809

原创 一文吃透大模型微调技术(附源码解释)

微调的本质是**在预训练模型基础上,使用特定任务数据集进行二次训练**,使模型参数适应新任务。其核心逻辑是:冻结预训练模型大部分参数(或全部参数),仅调整部分参数(或全部),以较小的计算成本让模型学习任务特性,而我们需要微调就要先了解整体微调的结构包含哪些部分,接下来我们就来认识一下

2025-08-11 10:40:00 1047

原创 详解 RuntimeError: CUDA error: an illegal memory access was encountered 的解决之道

摘要:本文深入解析了深度学习开发中常见的"CUDA error: an illegal memory access"错误。该错误通常因GPU访问非法内存地址引发,具有延迟暴露、难以定位的特点。文章从硬件、软件和代码三个维度提出系统解决方案:硬件层面需检查散热、供电和显存健康;软件环境需确保CUDA版本与驱动匹配;代码层面要重点排查内存越界、释放问题和多线程安全。同时推荐使用cuda-gdb、Nsight Systems等专业工具进行高级调试。最后给出了从最小化测试到降低复杂度的系统性排查

2025-07-31 18:16:54 3153 1

原创 大模型微调一文全解析

本文将带你走进大模型微调的世界,让你体会如何高效的让大模型根据自己的想法从基座模型变成某领域的专家。

2025-07-22 11:13:59 1219

原创 简单明了的对比PyTorch与TensorFlow

摘要:PyTorch和TensorFlow作为当前两大主流深度学习框架,在设计理念与核心优势上各具特色。PyTorch采用原生动态图机制,提供灵活的开发体验和直观的Python接口,成为90%顶会论文的首选工具;TensorFlow则以静态图优化见长,通过Keras高阶API和成熟的部署生态,在工业级应用中占据优势。两者近年来呈现融合趋势:PyTorch 2.0引入编译优化提升性能,TensorFlow 2.x支持动态图增强易用性。选择框架需权衡需求——研究优先选PyTorch快速迭代,生产部署则倾向Ten

2025-07-15 11:25:56 1004

原创 Git安装(纯小白版)

Git是一款免费开源的分布式版本控制系统,常用于软件开发。它能记录文件在不同时间的改动,让用户在需要时查看、恢复旧版本。支持多人协作开发,多人可同时修改项目文件,Git会处理好冲突。开发者能在本地创建分支进行功能开发,完成后再合并到主分支。像许多大型软件项目、开源项目都用Git管理代码,本文将一步步带你安装Git。

2025-06-27 11:42:19 1089

原创 CPU、GPU、NPU、TPU、DPU与IPU的区别

在人工智能飞速发展的今天,我们每天使用的智能语音助手、刷到的个性化推荐、甚至手机的人脸识别功能,背后都离不开强大的硬件算力支撑。如果把AI模型比作大脑中的思维逻辑,那么AI硬件就是支撑这些逻辑运行的"肌肉"。从我们熟悉的CPU、GPU,到专门为AI优化的NPU、TPU,各类硬件层出不穷,这无疑加大了我们的理解难度,接下来我们就从CPU开始逐步了解各种处理器以及它的运作原理。

2025-06-27 11:02:19 1704

原创 如何更改 Docker 镜像存储路径

Docker Desktop默认将镜像存储在C盘的`C:\Users\<用户名>\AppData\Local\Docker\wsl\data`路径下。随着镜像和容器数量增加,C盘空间可能迅速被占满。本文将通过**WSL实例迁移**和**高级挂载策略**两种方案,教你安全高效地迁移存储路径。

2025-06-19 15:07:51 3434 6

原创 RAGFlow 本地部署后如何连接本地模型

本文详细讲述了如何将本地模型配置到 RAGFlow,虽然没官方文档也有介绍,但是基本上是一笔带过,不是很详细,我也根据网上的方法做了一些尝试,但都没有达到想要的效果,于是就有了这篇文章,想详细记录一下部署过程,避免大家走弯路。

2025-05-21 16:24:02 3967 13

原创 Windows 环境下 Docker Desktop 安装 + 汉化

在开发过程中,Docker 是一款极为实用的工具。本教程专为 Windows 用户打造,将全面且细致地讲解 Docker Desktop 的安装与配置步骤,助您迅速入门并熟练掌握。同时,考虑到语言使用习惯,我们精心准备了 Docker Desktop 汉化教程,让您能以更直观易懂的界面管理和操作容器环境。期望这份指南能为您的开发工作增添助力,使 Docker 成为您提升效率的绝佳帮手。

2025-05-15 14:45:29 1695 1

原创 RAGFlow Windows环境下本地部署全攻略

本文讲述了如何从0构建RAGFlow,其中包括在windows系统下的docker、WSL以及ubuntu的详细安装步骤,保证初学者一看就会,其中也包括很多在安装中遇到的问题,可以让读者少走很多弯路

2025-05-13 10:07:51 13466 14

原创 windows 在安装 Ubuntu-20.04 显示操作超时解决办法

在安装 Ubuntu-20.04 时,若系统显示操作超时,可能是由于未启用 Windows 虚拟机监控程序平台。解决方法如下:首先,通过控制面板打开“程序和功能”,然后点击“启用或关闭 Windows 功能”,找到并勾选“虚拟机平台”和“Windows 子系统 for Linux”两个选项。启用这些功能后,重新尝试安装即可解决问题。

2025-05-12 14:07:06 1986 2

原创 TensorFlow 安装全攻略

通过本文的一步步指导,你可以轻松完成 TensorFlow 的多平台安装,并掌握常见问题的解决方法。在实际开发中,建议优先使用虚拟环境隔离项目依赖,并根据硬件配置选择合适的 TensorFlow 版本。遇到复杂问题时,可结合官方文档和社区资源快速定位解决方案。安装常见错误代码速查表:检查显卡兼容性:重新安装匹配的 cuDNN 版本:切换国内镜像源或使用代理祝大家在深度学习的道路上一帆风顺!🌟。

2025-04-27 16:27:43 1906 1

原创 pandas 安装与使用一文知

pandas 是基于 Python 的开源数据处理与分析库,由 Wes McKinney 于 2008 年开发,旨在提供高效、灵活的数据结构和工具,解决现实中的数据分析问题。其名称源自 “panel data”(面板数据)和 “python data analysis” 的结合。pandas 是数据科学领域的核心工具,其设计哲学围绕 “让数据操作更简单、更直观” 展开。

2025-04-22 10:18:39 4650

原创 一文穿透 NumPy 实用指南

NumPy 是科学计算的 Python 基本包,它是一个 Python 库,它提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于数组快速作的例程分类,包括数学、逻辑、形状作、排序、选择、I/O、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。

2025-04-18 09:41:01 923

原创 传统神经网络、CNN与RNN

从传统神经网络开始介绍三个网络

2025-03-30 14:27:59 2615 10

原创 特征选择方法

在机器学习领域,原始数据往往包含大量冗余、噪声或无关特征,直接使用全量特征会导致计算成本增加、模型过拟合以及解释性下降。特征选择的核心目标是从高维数据中筛选出最具预测能力的特征子集,从而提升模型性能、降低复杂度并增强可解释性。通过合理的特征工程,不仅能提升模型性能,还能为业务决策提供更清晰的洞见。特征选择作为机器学习中非常重要的一环,一直极大程度的决定这模型的效果,下面就让我们一起进入特征选择的世界,为了方便大家总结归纳,在开头家里一个思维导图,大家可以根据内容对照查看。嵌入法 Embedded。

2025-03-26 17:00:59 1160 38

原创 朴素贝叶斯:理论、实践与最优性探秘

朴素贝叶斯是一种基于贝叶斯定理的监督学习算法,其"朴素"源于对特征间条件独立性的假设。尽管这个假设在现实中很少成立,但该算法在文本分类、垃圾邮件过滤等场景表现优异,尤其在数据量较少时仍能保持高效稳定。图1展示了其核心思想:所有特征在给定类别下独立。根据Harry Zhang教授的理论研究,朴素贝叶斯的成功源于依赖分布均衡性局部依赖抵消:不同特征的依赖方向在各类别中相互抵消

2025-03-25 11:07:42 1001 9

原创 集成学习(下):Stacking集成方法

Stacking(堆叠法)是一种集成学习技术,通过组合多个基学习器(base learner)的预测结果,并利用一个元模型(meta-model)进行二次训练,以提升整体模型的泛化性能。如果说 Bagging 是民主投票,Boosting 是学霸纠错,那么 Stacking 就是组建专家智囊团。如同医院的多学科会诊(MDT),Stacking通过分层建模将不同领域的专家意见进行综合,突破单一模型的天花板。

2025-03-21 15:10:27 2218 44

原创 集成学习(中):Boosting集成方法

如果说Bagging是民主投票,那么Boosting就是学霸纠错。就像学生在错题本上反复练习薄弱知识点,Boosting通过迭代修正的方式让模型在错误中持续进化。Kaggle竞赛的启示:在2023年之前Kaggle机器学习结构化数据竞赛中,85%的Top方案使用XGBoost或LightGBM。其中,Boosting类算法在时间序列预测任务中的准确率比传统方法平均提升23%。

2025-03-20 09:14:00 1069 14

原创 集成学习(上):Bagging集成方法

在机器学习的世界里,没有哪个模型是完美无缺的。就像古希腊神话中的"盲人摸象",单个模型往往只能捕捉到数据特征的某个侧面。但当我们把多个模型的智慧集合起来,就能像拼图一样还原出完整的真相,接下来我们就来介绍一种“拼图”算法——集成学习。集成学习是一种机器学习技术,它通过组合多个模型(通常称为“弱学习器”或“基础模型”)的预测结果,构建出更强、更准确的学习算法。这种方法的主要思想是利用群体智慧的概念——即整体性能优于单个个体。

2025-03-17 15:59:56 1819 45

原创 直方图梯度提升:大数据时代的极速决策引擎

梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力的持续提升。传统GBDT在处理每个节点分割时需要对特征值进行全量排序,当面对高维大数据时,计算复杂度呈指数级增长。

2025-03-16 10:32:54 1185 6

原创 深度迁移学习实战指南:从理论到产业级应用

迁移学习是指将已经在某一特定任务上训练好的模型参数应用于另一不同但相关的新任务中,以此来提高新任务的学习效率和效果。通过这种方式,迁移学习可以在目标域的数据量有限的情况下仍然取得较好的泛化能力。

2025-03-12 16:37:48 1858 45

原创 超长4万字大模型技术术语全解析:100+核心概念与实战代码指南

在当今的人工智能领域,大模型技术无疑是最为耀眼的明星。随着GPT、文心一言、通义千问等模型的问世,大模型已经深入到我们生活的方方面面,从智能语音助手到智能写作工具,从智能翻译到智能客服,其影响力无处不在。为了帮助大家更好地理解大模型相关的技术和概念,我特别整理了这份大模型术语表,涵盖了100多个关键概念,希望能为大家在探索大模型的道路上提供有力的支持。避免大家看不到最后,直接上点干货[坏笑]

2025-03-11 11:49:12 1846 19

原创 全球首款通用型AI Agent——Manus 震撼发布

作为一款突破性AI产品,Manus突破了传统聊天机器人的局限,不仅能提供建议,还能通过多代理协作系统自主规划、执行并交付复杂任务,覆盖教育、金融、生活服务、数据分析等多个领域。技术层面,Manus 在权威的 GAIA 基准测试中表现优异,创下 SOTA 成绩,超越同类产品。又占据了各大新闻媒体网站,热度甚至一度超过了年前 DeepSeek 刚发布的时候,3月6日,A股市场高开高走,AI智能体概念表现火爆,截至收盘,立方控股30%涨停,新开普、汉得信息、中亦科技、致远互联、鼎捷数智、康力源等20%涨停。

2025-03-07 10:57:58 1978 15

原创 阿里深夜推出全新推理模型,仅1/20参数媲美DeepSeek R1满血版

阿里深夜推出全新推理模型,仅1/20参数媲美DeepSeek R1

2025-03-06 11:49:41 3892 47

原创 大模型核心要素完全解析:从数字神经元到智能对话的奥秘

在大模型的语境中,token 是一个非常重要的概念,token 通常是指将输入文本或其他数据进行分割后得到的一个个基本单元。简单来说,就是把文本拆分成一个个小块,这些小块可以是单词、字符、子词等,模型就是基于这些 token 来进行处理和理解的。例如,对于句子 “I love apples”,可能会被分割成三个 token:“I”“love”“apples”。

2025-03-05 10:59:12 1596 17

原创 PyCharm 无法识别 Conda 环境的解决方案

其实这是新版 pycharm 环境兼容问题,是正常的。我在网上找了很多解决办法,都没有有效解决这个问题,包括将环境路径替换为 .bat 文件和查找 python.exe 文件。到这一步应该已经解决了新版 PyCharm 找不到 conda 环境的问题,如果没有,你可以参考下面的几种方法,再次尝试。通过本指南的系统化排查,可解决99%的 Conda 环境识别问题。如仍遇困难,建议检查系统权限设置或尝试。

2025-03-04 10:16:55 12803 22

原创 PyTorch终极安装指南:CPU/GPU双版本+环境配置全攻略

最后一条命令设置在安装包时显示所使用的镜像源 URL,当然你也可以忽略这几条指令,不用管这一步骤,但是后面使用 conda 下载安装库的时候可能会比较慢,上面的指令直接在终端一一敲入即可,没有太多需要注意的地方,这里不做过多的解释,如果有不懂的,可以在评论区发出来,我看到会及时解答。通过以上步骤判断好了自己电脑是否有GPU,就可以通过后面的步骤安装适合自己电脑的版本,我GPU和CPU版本的安装都做了,所以大家注意甄别,不带说明的,是都要进行的操作。选择好路径之后,点击Next。

2025-03-01 09:09:02 6676 48

原创 Mean Shift聚类算法深度解析与实战指南

Mean Shift(均值漂移)是一种基于密度梯度上升的非参数聚类算法,无需预设聚类数量,通过迭代寻找概率密度函数的局部最大值完成聚类。该算法在图像分割、目标跟踪等领域有广泛应用,尤其擅长处理任意形状的密度分布。

2025-02-28 15:12:47 1105 18

pandas - Zipped HTML

pandas - Zipped HTML

2025-04-21

这篇文章是《numpy-ref.pdf》文档的内容概述,主要介绍了NumPy 2.2.0版本的参考手册 以下是文章的主要内容:

内容概要:本文档是关于NumPy库的官方参考手册,版本为2.2.0,发布于2025年1月19日。手册详细描述了NumPy的功能模块、对象及其用途。手册分为Python API、C API、其他主题和致谢部分。Python API部分介绍了NumPy的核心命名空间和子模块,包括常用的fft(快速傅里叶变换)、linalg(线性代数)、random(随机数生成)等模块。手册还涵盖了特殊用途和遗留命名空间的内容,以及各种异常处理机制。此外,手册提供了详细的函数参数说明、示例代码和相关的数学背景知识。 适合人群:具备一定编程基础

2025-04-17

朴素贝叶斯的最优性研究

张教授关于朴素贝叶斯的最优性研究

2025-03-25

朴素贝叶斯的最优性研究

内容概要:论文探讨了朴素贝叶斯分类器(Naive Bayes)表现出色的原因。作者提出了一种新解释,即节点间的局部依赖关系及其分布对分类的影响比单纯依赖条件独立假设更为关键。无论属性间依赖关系有多强,如果这些依赖在不同类别的分布是均匀的,或者可以相互抵消,朴素贝叶斯仍然是最优选择。文中定义了两种分类器在零一损失函数下相等的概念以及提出了局部与全局依赖分布理论,并证明了一个充分必要条件来确定朴素贝叶斯的优化时机。另外还讨论了多元高斯分布情况下的具体优化条件,指出朴素贝叶斯可能由于属性间的依赖性相互补偿而保持高性能。 适合人群:具有统计学基础知识或机器学习背景的研究者,数据分析师,从事机器学习领域的专业工作者。 使用场景及目标:研究目的是为了深入了解为什么朴素贝叶斯分类器即使基于几乎不成立的前提——即所有特征在给定类别标签的情况下彼此独立,也能达到较好的预测性能。它适用于希望从数学角度解释朴素贝叶斯高效性的读者,或是试图改进现有模型效果并寻找更优解决方案的专业人士。 阅读建议:对于那些想要了解朴素贝叶斯实际运作机制的人士来说,本篇文章提供了一个深入的技术解读。读者应该注意关注关于‘局部依赖导数比’的部分,这对于理解整个系统的性能至关重要。并且要注意到在特定情况下,即使违反条件独立性假设,朴素贝叶斯仍能有效工作的情况。最后部分有关于高斯分布下的分析,为实际应用提供了有价值的参考案例。此外,读者还可以从中获得一些新的见解和启示,用以思考怎样进一步提升类似模型的表现。

2025-03-25

TOKEN STATISTICS TRANSFORMER: LINEAR-TIME ATTENTION VIA VARIATIONAL RATE REDUCTION

内容概要:论文介绍了Token Statistics Transformer(TOST)及其注意力机制——Token Statistics Self-Attention(TSSA),这是一个基于白盒架构设计的新型自注意力模型。TOST的独特之处在于它不计算标记之间的成对相似度,而是从标记特征的二阶统计量构建低秩投影,因此仅需线性时间复杂度来完成任务,显著提高了处理大量高维令牌时的速度与内存效率。TOST在图像分类任务如ImageNet上展示了具有竞争力的表现,并且在长序列建模基准测试中的性能优于其它transformer架构变体,同时保持甚至提升任务表现。 适用人群:对于机器学习尤其是深度学习领域有一定背景的研究人员和技术爱好者;对改进transformer架构有强烈兴趣的学生或者工程师们亦将受益。 使用场景及目标:适用于需要高效处理大规模或长距离相关性的视觉和语言处理任务;目标包括替代传统自我关注操作以提高系统效率和可解释性,同时确保模型效果不受损或得到优化。 其他说明:作者提供了详细的实验设置及配置信息,并对比了多个现有模型的参数数量和效能指标,表明在减少计算资源消耗方面存在明显优势。未来研究方向集中在验证更大规模应用下的精度是否仍然具有竞争力以及探索替换MLP模块的设计可能性。此外,在因果版本的语言建模任务中也取得了良好的结果,证明了该方法在不同应用场景下的通用性和灵活性。

2025-02-18

大模型清华大学手把手教你如何使用DeepSeek(内附清华大学官方资料)

大模型清华大学手把手教你如何使用DeepSeek(内附清华大学官方资料)

2025-02-11

大模型清华大学手把手教你如何使用DeepSeek(内附清华大学官方资料)

大模型清华大学手把手教你如何使用DeepSeek(内附清华大学官方资料)

2025-02-11

大模型DeepSeek-R1 论文原文翻译

大模型DeepSeek-R1 论文原文翻译

2025-02-07

聚类实例数据集 - 电商数据集

聚类实例数据集 - 电商数据集

2025-01-17

kaggle平台Wine Quality 数据集

kaggle平台Wine Quality 数据集

2024-12-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除