Math 128A Spring 2020: Midterm ExamMatlab

Java Python UCB Math 128A, Spring 2020: Midterm Exam

Prof. Persson, April 9, 2020

Instructions:

❼ This exam is an open book, unproctored online exam.

❼ Please write your name and your SID on your first page.

❼ Write your answers on a separate page for each problem.

❼ You have 80 minutes to work on the exam and 15 minutes to upload your work to Gradescope.

❼ You must justify your answers for full credit.

❼ You may access all the course material, including notes/textbooks, homework/project solutions, and your own notes.

❼ But you may not:

– Use any other material that was not part of the course, including any internet resources.

– Use any computing environment such as MATLAB, calculators, or any other programming language.

– Have any type of communication with anyone about the exam. This includes direct calls, texts, or emails, but also indirect communication e.g. through shared online documents or by uploading the problems to any websites.

❼ At the conclusion of the exam, please copy and sign the honesty statement in the last problem. If we or the university discover any violation of these rules, it will be reported to the UC Berkeley Office of Student Conduct. Math 128A, Spring 2020: Midterm ExamMatlab

1. Consider the equation 

   a) (1 point) Show that the equation has at least one solution.

   b) (2 points) Show that the equation has exactly one solution p.

2. Consider the fixed point iteration pn+1 = g(pn), where 

   a) (3 points) Show that  converges to a unique fixed point p for any initial guess p0 ∈ R.

   b) (2 points) Find another fixed point iteration pn+1 = g2(pn) which converges to the same fixed point p but quadratically, provided the initial guess is close enough (including a justification for the quadratic convergence).

3. Consider the function f(x) = |x|.

   a) (3 points) Find a polynomial p(x) which interpolates the function f(x) at the points x = −2, −1, 0, 1, 2.

   b) (2 points) Suppose you use p(x) to approximate the original function f(x). Using the remainder term for interpolating polynomials, what bound can you obtain for the error if x ∈ [−2, 2]?

4. (3 points) Find an O(h2) formula to approximate f‘’ (x0) that uses f(x0 − h), f(x0), and f(x0 + 2h). Include the details of the error term         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值