个人总结:机器学习分类模型评估指标 准确率、精确率、召回率、F1等以及关联规则支持度、置信度

本文详细介绍了机器学习分类模型的评估指标,包括准确率、精确率、召回率、F1分数及其在不平衡数据集中的局限性。此外,还探讨了ROC曲线、AUC、PR曲线以及支持度、置信度等关联规则评价指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习分类中的常用指标,这几个指标最大的特点,其实是容易看完就忘。。

英文

TP true positive, 前面的字母代表预测是否正确,后面的字母代表预测的类型,TP是预测正确的正例,预测为1实际也为1

TN true negative预测正确的负例,预测为0实际也为0

FP false positive预测错误,预测为正例,实际为负例,所以是预测错误的负例,预测为1实际为0

FN false negative预测错误的正例,预测为1实际为0

准确率-accuracy

精确率-precision

召回率-recall

F1分数-F1-score

ROC 曲线 Receiver Operating Characteristic curve

ROC曲线下面积-ROC-AUC(area under curve)

PR曲线 precision recall curve 

PR曲线下面积-PR-AUC

准确率

准确率和精确率是一对在字面上很容易搞混的名词,准确率 = 预测正确的样本数量/预测总的样本数量。准确率指标在不平衡样本的情况下,基本没有什么实质性说明作用。这很容易理解,假设有100条样本,其中99条正例,1条反例。假设一个模型对所有样本均预测为正例,则这个模型的准确率为99%。然而它并没有泛化作用,因为它无法预测反例。

精确率/召回率

精确率和召回率关系紧密,是一对在含义上很容易混淆的名词。

精确率针对预测结果,所有预测为正的样本的包括:将正例预测为正(TP),负例预测为正(FP)

精确率,即为预测正确的正例(TP)在所有预测为正例的样本中出现的概率,即分类正确的正样本个数占分类器判定为正样本的样本个数的比例:

precision =\frac{TP}{TP + FP}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值