题目描述
把一个 n 行 m 列的字符阵列看做一个迷宫,迷宫仅包含 L、Q、B、S 中的大写母(蓝桥杯赛的汉语拼音首字母)。初始时,你可以从任意一个“L”字母开始,移向相邻的“Q”字母,然后从此“Q”字母出发,移向相邻的“B”字母,然后从此“B”字母出发,移向相邻的“S”字母……。这样,你就算是走过了一个“LQBS”字符序列。接下来,仍然可以从此“S”字母出发,移向相邻的“L”字母……,重复上述的动作,你就可以不断地走过“LQBS”序列。请注意,所谓相邻仅包含上、下、左、右 44 个方向,且只能从 L->Q,从 Q->B,从B->S,从 S->L。可以想像,由于选择的出发点不同,我们有可能在迷宫中走过无数次的“LQBS”,或者是有限次的“LQBS”,或者一次也走不了。编程实现:请你编写程序,求出在给定的迷宫中,我们最多可以走过多少次“LQBS”?
输入格式
第一行:正整数 n,m,表示迷宫的规模为n 行 m 列;接下来的 n 行:每行 m 个符合题意的字母,字母间无空格。
输出格式
一个整数。即:如果在迷宫中可以无限次的走过“LQBS”,输出−1−1,否则,输出可以走过“LQBS”的最多次数
输入数据 1
1 2
LQ
Copy
输出数据 1
0
Copy
输入数据 2
3 3
LSB
QBQ
BSL
Copy
输出数据 2
-1
Copy
输入数据 3
4 4
BLQB
BBQS
SBQL
QQQQ
Copy
输出数据 3
2
Copy
数据规模与约定
对于 100%100% 的数据 , 0≤n,m≤100。
正文部分:
写个函数,暴力枚举吧(已AC)
#include<iostream>
#include<algorithm>
#include<fstream>
using namespace std;
const int N=110;
char g[N][N];
int f[N][N];
int n,m;
bool wuxian;
int mstep,step=1;
int dx[4]={0,1,0,-1},dy[4]={1,0,-1,0};
void dfs(int x,int y){
for(int i=0;i<4;i++){
int xx=x+dx[i],yy=y+dy[i];
if(xx<0||xx>n-1||yy<0||yy>m-1)continue;
if((g[x][y]=='L' && g[xx][yy]=='Q')||(g[x][y]=='Q' && g[xx][yy]=='B')||
(g[x][y]=='B' && g[xx][yy]=='S')||(g[x][y]=='S' && g[xx][yy]=='L')){
if(f[xx][yy]){
wuxian=true;
return ;
}
f[xx][yy]=1;
step++;
mstep=max(mstep,step);
dfs(xx,yy);
f[xx][yy]=0;
step--;
}
}
return ;
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++) cin>>g[i];
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(g[i][j]=='L'){
memset(f,0,sizeof(f));
dfs(i,j);
}
if(wuxian){
cout<<-1<<endl;
return 0;
}
}
}
cout << mstep/4 << endl;
return 0;
}