pytorch
Bymyself.kk
这个作者很懒,什么都没留下…
展开
-
Swin-transformer 和其升级Cswin-transformer
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows --论文解读论文信息、概要Swin transformer是微软今年三月25日公布的一篇利用transformer架构处理计算机视觉任务的论文。源码仅仅公布两天就在github上收获了2.2k个stars。它是我个人认为迄今为止用tranformer架构处理计算机视觉任务最有实用价值的一篇文章,在图像分割,目标检测各个领域已经霸榜,让很多人看到了transfo转载 2022-03-14 14:53:18 · 1168 阅读 · 0 评论 -
空洞卷积后输出特征图的尺寸计算
空洞卷积的等效卷积核(感受野)大小:ke = k + (k − 1)(r − 1)k为原始卷积核大小,r为dia rate参数。输出计算同卷积运算。输出特征大小计算out = ( in − F + 2 ∗ pading ) / stride +1注意:这里的F就是上面的感受野,这个公式也适用于常规的卷积...原创 2021-06-15 20:16:20 · 4129 阅读 · 0 评论 -
RuntimeError: stack expects each tensor to be equal size, but got [3, ] at entry 0 and [1,]at entry1
RuntimeError: stack expects each tensor to be equal size, but got [3, 256, 256] at entry 0 and [1, 256, 256] at entry 1该错误是我在用u-net(pytorch版)跑sar图像(灰度图)时爆出来的。主要是因为设置的n_channel的值和读入图像img的实际通道数不符合,通过调试,我发现我的训练图像灰度图的通道数不全为1,里面还有3通道于是就索性将dataset中读入图像的命令后原创 2021-05-26 10:04:35 · 12575 阅读 · 2 评论 -
准确率precision与召回率recall详解
1、两个最常见的衡量指标是“准确率(precision)”(你给出的结果有多少是正确的)和“召回率(recall)”(正确的结果有多少被你给出了)这两个通常是此消彼长的(trade off),很难兼得。很多时候用参数来控制,通过修改参数则能得出一个准确率和召回率的曲线(ROC),这条曲线与x和y轴围成的面积就是AUC(ROC Area)。AUC可以综合衡量一个预测模型的好坏,这一个指标综合了precision和recall两个指标。但AUC计算很麻烦,有人用简单的F-score来代替。F-score计原创 2020-11-08 17:00:26 · 1004 阅读 · 0 评论 -
LINK : fatal error LNK1158: 无法运行“rc.exe” error: command ‘D:\\visual studio 2017\\VC\\BIN\\x86_amd64\
参考的这两篇blog,,已经解决了http://blog.csdn.net/kaever/article/details/106526610http://blog.csdn.net/ljyljyok/article/details/108665762原创 2020-09-23 11:12:59 · 274 阅读 · 0 评论 -
Open Set Domain Adaptation 开放集域适应--论文笔记
https://zhuanlan.zhihu.com/p/31230331参考知乎大神的文章,很清晰转载 2020-09-17 19:49:43 · 550 阅读 · 0 评论 -
CV2模块详细使用教程
指路 https://blog.csdn.net/RNG_uzi_/article/details/90034485转载 2020-09-06 10:23:57 · 1178 阅读 · 0 评论 -
PyTorch搭建卷积神经网络CNN实现MNIST手写数字识别(附代码)
首先需要对CNN网络理解,如果还不清楚卷积神经网络的可以去看https://blog.csdn.net/v_JULY_v/article/details/51812459 大神的超详细解析!原创 2020-07-02 17:34:04 · 3319 阅读 · 2 评论 -
pytorch中搭建CNN网络时 x.view(x.size(0),-1) 的含义
在进行CNN网络图像识别的时候,对网络搭建中这句x.view(x.size(0),-1) 不太清楚,找了文章了解。这句话一般出现在model类的forward函数中,具体位置一般都是在调用分类器之前。分类器是一个简单的nn.Linear()结构,输入输出都是维度为一的值,x = x.view(x.size(0), -1) 这句话的出现就是为了将前面多维度的tensor展平成一维。下面是个简单的例子,我将会根据例子来对该语句进行解析。 class Net(nn.Module): def __in原创 2020-07-02 16:02:56 · 903 阅读 · 0 评论 -
win10环境下安装pytorch-cpu版
开发环境:win10 x64位anaconda3-4.0.0虚拟环境python版本 3.6.5(安装过程中根据你安装的pytorch版本可能需要升级)前提:anaconda已配置好环境变量,使用conda切换到需要安装pytorch的虚拟环境。第一步:anaconda改为国内源(如果已经改过,请检查添加的国内源中是否有pytorch的源(下方代码中倒数第二行),如果没有请添加国内pytorch源)conda config --add channels https://mirrors.tuna.转载 2020-06-30 20:52:15 · 586 阅读 · 0 评论 -
pytorch中transforms函数的21种使用方法解析
一、 裁剪——Crop1.随机裁剪:transforms.RandomCrop**class torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode=‘constant’)功能:依据给定的size随机裁剪参数:size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size)padding-(sequen转载 2020-06-29 22:02:44 · 9876 阅读 · 1 评论 -
pytorch下搭建神经网络进行图像识别任务
任务说明:本次对自己的数据集进行分类操作,后续采用LSTM循环神经网络,本次图像分为 ‘bmp2’,‘btr70’,'t72’三类。(一) 图像数据预处理部分import numpy as npimport osimport torchfrom torch.utils.data.dataset import Datasetfrom PIL import Imageimport matplotlib.pyplot as plt #导入工具包#首先将图像数据生成列表,并分类别加上标签d原创 2020-06-29 21:50:02 · 932 阅读 · 0 评论