pytorch中搭建CNN网络时 x.view(x.size(0),-1) 的含义

在PyTorch的CNN网络中,`x.view(x.size(0), -1)`用于将多维度张量展平为一维。这通常在卷积层后、线性分类器前使用,以便输入到分类器。该操作的目的是调整张量形状以适应全连接层,其中`x.size(0)`表示批量大小,`-1`表示自动推断剩余的维度。" 79031072,7445151,解决WTL在高版本VS编译错误的攻略,"['vc', 'wtl', 'Windows开发', '编译问题']
摘要由CSDN通过智能技术生成

在进行CNN网络图像识别的时候,对网络搭建中这句x.view(x.size(0),-1) 不太清楚,找了文章了解。

这句话一般出现在model类的forward函数中,具体位置一般都是在调用分类器之前。分类器是一个简单的nn.Linear()结构,输入输出都是维度为一的值,x = x.view(x.size(0), -1) 这句话的出现就是为了将前面多维度的tensor展平成一维。下面是个简单的例子,我将会根据例子来对该语句进行解析。

 class Net(nn.Module):
    def __init__(self,batch_size):
        super(Net,self
以下是一个基本的CNN网络,可以用Pytorch搭建,读取42x42的矩阵,并且进行二分类(0或1): ```python import torch import torch.nn as nn class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(32 * 11 * 11, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) self.relu = nn.ReLU() def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.pool(x) x = self.conv2(x) x = self.relu(x) x = self.pool(x) x = x.view(-1, 32 * 11 * 11) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x model = CNN() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 假设数据已经载入到train_data和train_labels for epoch in range(100): running_loss = 0.0 for i in range(len(train_data)): inputs = torch.tensor(train_data[i], dtype=torch.float).unsqueeze(0).unsqueeze(0) labels = torch.tensor([train_labels[i]], dtype=torch.long) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(train_data))) ``` 注意,这里使用了`nn.CrossEntropyLoss()`作为损失函数,因此标签应该是从0开始的整数。如果你的标签是0和1,可以将标签转换为整数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值