GNN GCN
图神经网络 图卷积网络
不务正业的土豆
知行合一 止于行善
展开
-
图卷积网络GCN代码分析(Tensorflow版)
文章目录GCN中的数据集和格式说明Cora、Citeseer、Pubmed以Cora为例数据格式示例代码分析`train.py``models.py``layers.py``utils.py``metrics.py``inits.py`参考应某些同学要求,分享一个对GCN源码的分析。源代码 github:https://github.com/tkipf/gcnGCN中的数据集和格式说明Co...原创 2019-09-08 18:27:55 · 40742 阅读 · 57 评论 -
HAN - Heterogeneous Graph Attention Network 异构图注意力网络 WWW 2019
文章目录1 相关介绍背景元路径 meta-path异构图和同构图相关工作Graph Neural NetworkNetwork Embedding贡献2 HAN模型2.1 Node-level Attention2.2 Semantic-level Attention2.3 模型分析3 实验3.1 数据集3.2 Baselines3.3 实现细节3.4 节点分类3.5 聚类3.6 分层注意力机制...原创 2020-01-02 15:02:40 · 11827 阅读 · 10 评论 -
Graph U-Nets [gPool gUnpool] 图分类 节点分类 图池化 ICML 2019
文章目录1 相关介绍背景贡献2 相关工作图卷积图池化3 Graph U-Nets3.1 Graph Pooling Layer:gPool3.2 Graph Unpooling Layer:gUnpool3.3 Graph U-Nets Architecture 图U-Nets架构3.4 Graph Connectivity Augmentation via Graph Power 通过图幂操作...原创 2019-12-02 09:02:34 · 14695 阅读 · 3 评论 -
SAGPool - Self-Attention Graph Pooling 图分类 图池化方法 ICML 2019
文章目录1 相关介绍背景创新性2 相关工作基于拓扑的池化全局池化分层池化3 方法3.1 基于self-attention的图池化方法:SAGPoolSelf-attention mask图池化SAGPool的变种3.2 模型架构卷积层readout层全局池化架构分层池化架构4 实验数据集GNNs的评估训练过程BaselinesSAGPool的变种结果总结5 分析全局池化和分层池化考虑图拓扑结构的影...原创 2019-11-30 18:28:31 · 20494 阅读 · 13 评论 -
[DIFFPOOL] - Hierarchical Graph Representation Learning with Differentiable Pooling 图分类 NeurIPS 2018
文章目录1 相关介绍相关概念背景介绍模型简介2 相关工作3 DIFFPOOL:可微的pooling方法3.1 问题定义图神经网络堆叠GNNs和pooling层3.2 Differentiable Pooling via Learned AssignmentsPooling with an assignment matrixLearning the assignment matrixPermutat...原创 2019-11-29 11:34:17 · 11895 阅读 · 11 评论 -
PGE - A Representation Learning Framework for Property Graphs 属性图表示学习框架 KDD 2019
文章目录1 相关介绍1.1 背景1.2 现有方法的局限性1.3 contributions2 相关工作矩阵分解随机游走图神经网络中的邻接聚合3 PGE框架3.1 符号定义3.2 问题定义3.3 PGE三步骤步骤1:基于节点属性的聚类步骤2:基于邻居的采样步骤3:邻居聚合3.4 边的方向和属性的支持3.5 算法4 PGE的分析4.1 bias策略的效率4.2 bias值的影响4.3 合并边的属性5 ...原创 2019-11-26 21:37:29 · 2183 阅读 · 1 评论 -
基于空间域的图卷积GCNs(ConvGNNs)
文章目录Spatial-based ConvGNNs 基于空间的卷积Neural Network for Graphs (NN4G)Contextual Graph Markov Model (CGMM)Diffusion Convolutional Neural Network (DCNN)扩散卷积神经网络Diffusion Graph Convolution(DGC) 扩散图卷积PGC-DGC...原创 2019-11-20 21:38:40 · 14816 阅读 · 5 评论 -
图或网络中的中心性:点度中心性、中介中心性、接近中心性、特征向量中心性、PageRank
文章目录点度中心性(degree centrality)中介中心性(betweenness centrality)接近中心性(closeness centrality)特征向量中心性(eigenvector centrality)有向图与PageRank小结网络由节点(node)和连接它们的边(edge)构成。例如,微信好友的关系是相互的,如果我是你的好友,你也是我的好友。这样的网络称为无向网络...原创 2019-11-17 14:25:39 · 104111 阅读 · 24 评论 -
How Powerful are Graph Neural Networks? GIN 图同构网络 ICLR 2019 论文详解
文章目录1 相关介绍Definition 1 :multiset数学上的单射(injective)2 GNN 怎么和 Weisfeiler-Lehman test 关联起来?2.1 符号定义2.2 Graph Neural Networks2.3 两类任务2.3 Weisfeiler-Lehman test 图同构测试3 WL test 是GNN性能的上限Lemma 24 什么样的GNN 可以和W...原创 2019-10-31 17:04:07 · 21555 阅读 · 9 评论 -
RGCN - Modeling Relational Data with Graph Convolutional Networks 使用图卷积网络对关系数据进行建模 ESWC 2018
文章目录1 相关介绍两个任务main contributions2 Neural relational modeling2.1 符号定义2.2 关系图卷积网络R-GCN2.3 Regularization 规则化basis decomposition 基函数分解dblock-diagonal decomposition 块对角分解3 节点分类4 链接预测5 实验5.1 实体分类实验Datasets...原创 2019-10-27 11:12:55 · 20735 阅读 · 6 评论 -
GCMC - Graph Convolutional Matrix Completion 图卷积矩阵补全 KDD 2018
文章目录1 相关介绍1.1 背景1.2 side information1.3 contributions1.4 相关介绍自编码器矩阵分解模型Matrix completion with side information2 在二部图中矩阵补全作为一种连接预测2.1 符号定义2.2 Revisiting graph auto-encoders 图自编码器2.3 Graph convolutional...原创 2019-10-25 18:13:59 · 19645 阅读 · 8 评论 -
SGC - Simplifying Graph Convolutional Networks 简化的图卷积网络 论文详解 ICML 2019
文章目录1 相关介绍1.1 Simple Graph Convolution (SGC)提出的背景1.2 SGC效果2 Simple Graph Convolution 简化的图卷积2.1 符号定义2.2 图卷积网络GCNGCN vs MLPFeature propagation 特征传播Feature transformation and nonlinear transition分类器2.3 简...原创 2019-10-15 23:06:27 · 12665 阅读 · 4 评论 -
GAT - Graph Attention Network 图注意力网络 ICLR 2018
文章目录1 相关介绍GCN的局限性本文贡献(创新点)attention 引入目的相关工作谱方法 spectral approaches非谱方法 non-spectral approaches (基于空间的方法)注意力机制 self-attention2 GATGraph Attentional Layer计算注意力系数(attention coefficient)加权求和(aggregate)mu...原创 2019-09-17 11:13:46 · 12323 阅读 · 6 评论 -
GCN - Semi-Supervised Classification with Graph Convolutional Networks 用图卷积进行半监督节点分类 ICLR 2017
文章目录Abstract1.Intruduction2.Fast Approximate Convolutions on Graphs(图的快速近似卷积)2.1 SpectralGraph Convolutins(谱图卷积)补充证明2.2 Layer-wise Linear Model(逐层线性模型)3. Semi-supervised Node Classfication(半监督节点分类)3.1...原创 2019-08-07 09:13:33 · 16804 阅读 · 5 评论 -
GeniePath:Graph Neural Networks with Adaptive Receptive Paths 论文详解 AAAI2019
文章目录1 相关介绍1.1 感受野的定义贡献2 图卷积网络GCNGCN、GraphSAGE、GATDiscussions3 GeniePath3.1 Permutation Invariant 排列不变性Theorem 1 (Permutation Invariant 排列不变性)Remark 2 (Associative Property 结合律)3.2 Adaptive Path Layer ...原创 2019-09-23 10:22:44 · 3275 阅读 · 2 评论 -
FastGCN: fast learning with graph convolutional networks via importance sampling 论文详解 ICLR 2018
文章目录1 简单介绍概率测度 probability measure自助法 bootstrappingGCN面临的两个挑战解决思路(创新点)2 相关工作3 通过采样进行训练和推理定理13.1 variance reduction 方差缩减Proposition 2(命题2)定理3命题43.2 Inference 推理3.2 和GraphSAGE的对比4 实验Benchmark数据集实验细节Fast...原创 2019-09-21 11:16:56 · 8840 阅读 · 1 评论 -
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning 深入了解半监督学习的图卷积网络GCN
文章目录1 简介2 相关工作2.1 Graph-Based Semi-Supervised Learning 基于图的半监督学习2.2 Graph Convolutional Networks 图卷积网络2.3 Semi-Supervised Classification with GCNs 用GCN进行半监督节点分类3 分析3.1 Why GCNs Work ?Laplacian Smoothi...原创 2019-09-19 15:30:43 · 5855 阅读 · 2 评论 -
【Graph Embedding】DeepWalk:Online Learning of Social Representations论文笔记
文章目录网络表示学习(Network Representation Learning,NRL)、Graph EmbeddingDeepWalk:Online Learning of Social Representations摘要:1. Introduction2. Problem Definition3. Learning social representations3.1 Random Wal...原创 2019-09-06 11:02:19 · 1828 阅读 · 1 评论 -
[论文笔记]:GraphSAGE:Inductive Representation Learning on Large Graphs 论文详解 NIPS 2017
文章目录Abstract1 IntroductionPresent work2 Related workFactorization-based embedding approachesSupervised learning over graphsGraph convolutional networks3 Proposed method: GraphSAGE3.1 Embedding generat...原创 2019-09-04 09:46:54 · 48360 阅读 · 42 评论 -
[论文翻译]-A Comprehensive Survey on Graph Neural Networks《图神经网络GNN综述》
文章目录摘要1 简介1.1 GNN简史1.2 Related surveys on graph neural networks1.3 Graph neural networks vs. network embedding1.4 Graph neural networks vs. graph kernel methods1.5 文章的创新性2 基本的图概念的定义3 GNN分类和框架3.1 GNNs分...原创 2019-08-24 22:09:11 · 11050 阅读 · 3 评论 -
[论文笔记]Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
文章目录Abstract1. IntroductionPrevious GCN Training Algorithms2. Background图卷积网络(GCNs)3. Proposed AlgorithmWhy does vanilla mini-batch SGD have slow per-epoch time?Embedding utilization can reflect compu...原创 2019-08-24 22:04:34 · 16821 阅读 · 9 评论 -
[LGCN论文笔记]:Large-Scale Learnable Graph Convolutional Networks
文章目录Abstract补充:如何理解 inductive learning 与 transductive learning?1. Introduction2. Related Work图卷积网络(GCNs)图注意网络(GATs)3. Methods3.1 Challenges of Applying Convolutional Operations on Graph Data3.2 Learna...原创 2019-08-24 22:00:09 · 5237 阅读 · 3 评论 -
DeepGCNs-Can GCNs Go as Deep as CNNs? ICCV 2019
文章目录Abstract1. Introduction2. Related Work3. MethodologyGraph Convolution NetworksDynamic Edges3.1. Residual Learning for GCNs3.2. Dense Connections in GCNs3.3. Dilated Aggregation in GCNs4. Experimen...原创 2019-08-13 19:23:24 · 8275 阅读 · 9 评论 -
[PinSage] Graph Convolutional Neural Networks for Web-Scale Recommender Systems 论文详解KDD2018
文章目录摘要1 简介1.1 背景介绍1.2 推荐系统评测指标2 相关研究3 方法3.1 Problem Setup3.2 Model ArchitectureForward propagation algorithmImportance-based neighborhoodStacking convolutions 堆叠卷积层3.3 Model Training 模型训练Loss function...原创 2019-09-18 16:00:20 · 5038 阅读 · 2 评论 -
[论文总结]:faster cnns with direct sparse convolutions and guided pruning 直接稀疏卷积和引导剪枝
文章目录AbstractIntroduction算法介绍:Direct Sparse ConvolutionA evaluation modelGUIDED SPARSITY LEARNING (GSL)ExperientsConclusion补充:几种矩阵存储模式COO: CoordinateCSR:按行压缩存储CSC:按列压缩存储这篇文章作为一篇会议论文在2017年发表于ICLR作者Jong...原创 2019-07-17 16:57:50 · 1255 阅读 · 0 评论 -
Adaptive Sampling Towards Fast Graph Representation Learning 基于适应性采样的快速图表示学习 论文详解 NIPS 2018
文章目录论文题目:Adaptive Sampling Towards Fast Graph Representation Learning作者:来自Tencent AI Lab的Wenbing Huang, Tong Zhang, Yu Rong, Junzhou Huang时间:2018来源:NIPS论文链接:https://papers.nips.cc/paper/7707-adap...原创 2019-10-10 23:36:13 · 2986 阅读 · 0 评论 -
[EGNN] Exploiting Edge Features for Graph Neural Networks 利用图神经网络的边特征 论文详解 CVPR 2019
文章目录1 简介1.1 GAT和GCN的局限性1.2 EGNN的创新点2 相关工作3 EGNN网络3.1 符号定义3.2 EGNN和GNN的对比3.3 Doubly stochastic normalization of edges 边的双随机归一化3.4 EGNN(A): Attention based EGNN layer3.5 EGNN\(C\): Convolution based EGN...原创 2019-10-09 22:06:33 · 9323 阅读 · 7 评论