[论文翻译]-A Comprehensive Survey on Graph Neural Networks《图神经网络GNN综述》

文章目录

这是一篇来自于清华数据科学研究院院长俞士纶(Philip S. Yu)团队的论文。
本人在读这篇文章时,发现网上有很多不同的版本,因此参考文献索引部分内容略有不同,本文的版本为:A Comprehensive Survey on Graph Neural Network(2019)。

摘要

近年来,深度学习彻底改变了很多机器学习任务,从图像分类,视频处理到语音识别,自然语言处理等,但是通常来说,这些任务的数据都是欧式数据。

图数据的复杂性给现有的机器学习算法带来了重大挑战。最近,出现了许多关于扩展图数据的深度学习方法的研究。文中对图神经网络(GNNs)在数据挖掘和机器学习方面的应用做了全面概述。

文中提出一种新的分类方法对GNNs各种方法进行分类。着眼于图卷积网络(GCN),回顾了一些最近提出来的新的架构,包括Graph attention networks(图注意力网络),Graph autoencoders(图自编码),Graph generative networks(图生成网络)以及Graph spatial-temporal networks(图时空网络)。

另外,文中还进一步讨论了图神经网络在各个领域的应用,总结了现有算法在不同任务中的开源代码,并提出了领域的潜在研究方向。

1 简介

神经网络近期的成功推动了模式识别和数据挖掘的研究,许多机器学习任务,例如目标检测,机器翻译,语音识别,曾经都严重依赖棘手的特征工程提取数据集的特征,现在已经被端到端的学习模式彻底改变,也就是卷积神经网络(CNN),长短时记忆网络(LSTM),和自编码(AE)。深度学习在许多领域的成功部分归功于快速发展的计算资源(如GPU)和大量训练数据,部分归功于深度学习从欧氏数据(如图像、文本和视频)中提取有效的数据表示。以图像分析为例,图像为欧式空间的规则表示,CNN能够利用图像数据的平移不变性,局部连结性和组合性,也就是CNN能够为各种图像分析任务提取整个数据集共享的局部特征。

深度学习在欧式数据上取得了巨大的成功,但是,越来越多的应用需要对非欧式数据进行分析。例如,在电子商务中,一个基于图的学习系统能够利用用户与商品之间的交互做出非常准确的推荐;在化学中,需要识别被建模为图结构的分子的生物活性以发现新的药物;在引文网络中,论文需要通过被引用的关系相互连接,然后通过挖掘关系被分成不同的组。图数据不规则,每个图的无序节点大小是可变的,且每个结点有不同数量的邻居结点,因此一些重要的操作如卷积能够在图像数据上轻易计算,但是不适用于图数据,可见图数据的复杂性给现有的机器学习算法带来了巨大的挑战。此外,现有的机器学习算法假设数据之间是相互独立的,但是,图数据中每个结点都通过一些复杂的连接信息与其他邻居相关,这些连接信息用于捕获数据之间的相互依赖关系,包括,引用,关系,交互。

近年来,人们对扩展基于图数据的深度学习越来越感兴趣。在深度学习的驱动下,研究人员借鉴CNN,LSTM,深度AE的思想设计了图神经网路的架构。为了处理复杂的图数据,在过去几年中,对重要算子的泛化和定义发展越来越快。例如,图1说明了图卷积算子是如何受标准2-D卷积算子的启发的。文中对图神经网络进行了一个全面的概述。

  • (a)2-D卷积。与图类似,将像素中的每个像素作为一个节点,像素的邻居节点由滤波器的大小决定。2-D卷积计算的是由红色节点和其邻居节点像素的加权平均值。节点的邻居都是有序的并且有固定大小
  • (b)图卷积。为了得到红色节点的隐式表示,图卷积算子的一个简单方法是取红色节点及其邻居节点的特征的平均值。与图像数据不同,节点的邻居是无序的且大小是可变的

1.1 GNN简史

图神经网络的表示法最早在Gori等(2005)[16](“A new model for
learning in graph domains,” in Proceedings of the International Joint
Conference on Neural Networks, vol. 2. IEEE, 2005
)中提出,在Scarselli等(2009)[17](“Neural network for graphs: A contextual constructive approach,” IEEE Transactions on Neural Networks, 2009)[18]中进一步阐述。这些早期的研究通过迭代的方式,利用循环神经结构传播邻居信息,直到达到一个稳定的不动点,来学习目标节点的表示。这些过程计算代价大,因此很多研究在克服这些挑战[19],[20]。此文推广图神经网络术语表示所有的针对图数据的深度学习方法。

受CNN在计算机视觉领域巨大成功的启发,很多方法致力于重新定义卷积算子,这些方法都属于图卷积网络(GCN)。Bruna et al.首次基于谱图理论[21](“Spectral networks and locally connected networks on graphs,” in Proceedings
of International Conference on Learning Representations, 2014)设计了一种图卷积的变体,自此,基于谱图的卷积网络[12](Convolutional
neural networks on graphs with fast localized spectral filtering,2016)、[14](Semi-supervised classification with
graph convolutional networks,2017)、(Deep convolutional networks on graph-structured data,2015 )[22]、(Adaptive graph convolutional neural networks,AAAI 2018)[23]、(Cayleynets:Graph convolutional neural networks with complex rational spectral filters,2017)[24]的改进、扩展和逼近越来越多。但是谱图方法一般同时处理整个图,而且难以并行处理或缩放,所以近年来基于空间的图卷积(GraphSAGE)[25], (Geometric deep learning on graphs and manifolds using mixture model cnns,CVPR 2017)[26], (Learning convolutional neural networks for graphs,ICML 2016)[27],(LGCN,kdd 18)[28]发展越来越快。这些方法通过聚集节点信息直接在图域进行卷积结合采样策略,计算可以在batch节点而不是整个图[25],[28]上进行,能够减少计算复杂度。

近年来,除了图形卷积网络外,还出现了许多新的图形神经网络。这些方法包括图注意力网络(GAN)、图的自动编码器(GAE)、图的生成网络(GGN)和图时空网络(GSTN)。

1.2 Related surveys on graph neural networks

关于图神经网络这一主题,现有的研究综述非常有限。Bronstein等人使用‘geometric deep learning’符号(Geometric deep learning: going beyond euclidean data,2017)[8]对非欧氏域的深度学习方法(包括图和流形)进行了概述。本研究虽然是对图形卷积网络的首次综述,但忽略了几个重要的基于空间的方法,包括[15]、[20]、[25]、[27]、[28]、[29],它们更新了最先进的benchmarks。此外,本研究并未涵盖许多新开发的架构,而这些架构对于图卷积网络同样重要。文中综述了图形注意网络、图形自动编码器、图形生成网络和图形时空网络等网络。Battaglia等人(Relational inductive biases, deep learning, and graph networks,2018)[30]将图网络定位为为从关系数据中学习的架构,在统一的框架下回顾了部分图神经网络。然而,他们的广义框架是高度抽象的,失去了对每个方法从其原始论文的见解。Lee等人[31]对图注意模型(graph attention model)进行了部分研究,图注意模型是图神经网络的一种。最近,张顶等人(Deep learning on graphs: A survey,2018)[32]提供了一份最新的关于图的深度学习的研究,缺少了关于图生成和时空网络的研究。总之,没有一个现有的研究提供了一个全面的概述图神经网络,只覆盖的一些图卷积神经网络,只检测了一些有限数量的作品,从而错过了最近发展可供选择的神经网络图,如图生成网络和图时空网络。

1.3 Graph neural networks vs. network embedding

网络表示学习(Network Representation Learning),又名网络Embedding(Network Embedding)、图Embedding(Graph Embedding),它旨在将网络中的节点表示成低维、实值、稠密的向量形式,使得得到的向量形式可以在向量空间中具有表示以及推理的能力,同时可轻松方便的作为机器学习模型的输入,进而可将得到的向量表示运用到社交网络中常见的应用中,如可视化任务、节点分类任务、链接预测以及社区发现等任务,还可以作为社交边信息应用到推荐系统等其他常见任务中。

GNN的研究与graph embedding或network embedding密切相关,是数据挖掘和机器学习([33] [34] [35] [36],
[37], [38])日益关注的另一个课题。network embedding致力于在一个低维向量空间进行网络节点表示,同时保护网络拓扑结构和节点的信息,便于后续的图像分析任务,包括分类,聚类,推荐等,能够使用简单现成的机器学习算法(例如,使用SVM分类)。许多network embedding算法都是典型的无监督算法,它们可以大致分为三种类型[33],,即,矩阵分解[39], [40]、随机游走[41]、深度学习

基于深度学习的network embedding属于GNN,包括图自编码算法(e.g. DNGR [42] and SDNE [43])和基于无监督训练(e.g., GraphSage [25])的图卷积神经网络。图2描述了network embedding和GNN的区别。

1.4 Graph neural networks vs. graph kernel methods

graph kernel是历史上解决图分类问题的主要方法。这些方法使用一个核函数来度量图对之间的相似性,这样基于核的算法(如支持向量机)就可以用于图的监督学习。与GNN类似,图核可以通过映射函数将图或节点嵌入到向量空间中。不同的是,这个映射函数是确定性的,而不是可学习的。图核方法由于具有对相似性计算的特点,存在计算瓶颈。一方面,GNN直接根据提取的图形表示进行图形分类,因此比graph kernel方法更有效。关于graph kernel方法的进一步回顾,可以见[39](A survey on graph
kernels
)。

1.5 文章的创新性

  • 新的分类方法
    提出新的GNN算法分类,分为五种类型GCN,GAN,GAE,GGN,GSTN。同时文章分析了network embedding和GNN的区别,并展示了GNN架构之间的联系。
  • 综合性调研
    对每种具有代表性的算法进行详细的描述,并进行相应的比较和总结,是目前为止最详细的概述。
  • 丰富的资源
    提供了丰富的GNN资源,包括最先进的算法,基准数据集,公开源码,实际应用。
  • 未来方向
    对现有算法的局限性进行了研究,并提出该领域可能的发展方向。

2 基本的图概念的定义

文中和GNN有关的定义如下:

  • 图:图G=(V,E,A),其中V为节点集合,E为边集合,A为邻接矩阵。
  • 有向图:有向图中所有边都是从一个节点指向另一个节点。对于有向图, A i j ≠ A j i A_{ij}≠A_{ji} Aij=Aji。无向图是所有边都无方向的图。对于无向图, A i j = A j i A_{ij}=A_{ji} Aij=Aji
  • 时空图:时空图是一种特征矩阵X随时间变化的图,G=(V,E,A,X),T是时间步长。

3 GNN分类和框架

本节介绍文章对GNN分类的方法,将任何differentiable的模型(包含了神经结构)作为GNN。将GNN分为五种类型GCN,GAN,GAE,GGN,GSTN。其中GCN在捕获结构依赖性方面起到了重要作用,如图3所示,其他的方法都部分利用了GCN作为构建模型的块。表2总结了每一类方法的代表性方法。

分类文献
GCNSpectral-based[12], [14], [21], [22], [23], [24], [44], [45], [46]
Spatial-based[13], [16], [17], [18], [19], [20], [25], [26], [27], [28], [47] [48], [49], [50], [51], [52], [53], [54], [55], [56], [57]
Polling Modeles[12], [22], [58], [59]
GAT[15], [29], [60], [61]
GAE[42], [43], [62], [63], [64], [65], [66]
GGN[67], [68], [69], [70], [71]
GSTN[72], [73], [74], [75], [76]

3.1 GNNs分类

Graph Convolution Networks (GCNs)-图卷积网络

GCNs将传统数据的卷积算子泛化到图数据,这个算法的关键是学习一个函数 f f f,能够结合邻居节点 v i v_i vi的特征 X j X_j Xj和其本身特征 X i X_i Xi生成节点 v i v_i vi的新表示, j ∈ N ( v i ) j \in N(v_i) jN(vi)

图4展示了GCN网络的一个使用多层CGN层的一个变形[14](2017,Semi-supervised classification with graph convolutional networks)

  • 输入是图的节点的特征X和图的邻接矩阵A
  • GCN层通过聚合来自其邻居的特征信息来封装每个节点的隐藏表示。在特征聚集之后,对结果输出进行非线性变换。通过堆叠多个层,每个节点的最终隐藏表示来自更远的邻居。

图5展示了一些基于GCN的不同的图神经网络模型

  • (a)用于图形分类的具有池化模块的图形卷积网络[12](Convolutional neural networks on graphs with fast localized spectral filtering,2016)。GCN层[14](2017,Semi-supervised classification with graph convolutional networks)后接一个池化层,将一个图粗化为子图,以便用被粗化的子图上的节点表示来表示更高的图级的表示。为了计算每个图形标签的概率,输出层是具有SoftMax函数的线性层。
  • (b)基于GCN的图形自动编码器[62](Variational graph auto-encoders,2016)。编码器使用GCN层为每个节点获取潜在的表示解码器计算编码器生成的节点潜在表示之间的成对距离。解码器在应用非线性激活函数后,重建了图的邻接矩阵。
  • (c)基于GCN的图时空网络图[74](2018,Spatio-temporal graph convolutional
    networks: A deep learning framework for traffic forecasting)。图中一个GCN层之后是1D-CNN层。GCN层在 A t A_t At X t X_t Xt上计算以捕获空间依赖性,而1d-cnn层沿时间轴在X上滑动以捕获时间依赖性。输出层是一个线性变换,为每个节点生成一个预测。
Graph Attention Networks (GANs)-图注意力网络

GAN与GCN类似,致力于寻找一个聚合函数,融合图中相邻的节点,random
walks和候选模型,学习一种新的表示。关键区别是:GAN使用注意力机制,为更重要的节点,walks或者模型分配更大的权重。注意力权重与神经网络参数一起学习。

图6展示了GCN和GAN在聚合邻居节点信息时候的不同。

  • (a)图卷积网络[14](2017,Semi-supervised classification with graph convolutional networks)在聚集过程中很清楚地分配了一个非参数的权重 a i j = 1 d e g ( v i ) d e g ( v j ) a_{ij}=\frac{1}{\sqrt{deg(v_i)deg(v_j)}} aij=deg(vi)deg(vj) 1 v i v_i vi的邻居 v j v_j vj
  • (b)图形注意力网络[15](ICLR 2017,Graph attention networks)通过端到端的神经网络结构隐式地捕获 a i j a_{ij} aij的权重,以便更重要的节点获得更大的权重。
Graph Auto-encoders (GAEs)-图自动编码器

GAE是一种无监督学习框架,通过编码器学习一种低维节点向量,然后通过解码器重构图数据。GAE是一种常用的学习graph embedding的方法,既适用于无属性信息[42]、[43]的普通图,还适用于是有属性图(Adversarially regularized graph autoencoder for graph embedding,IJCAI 2018)[64]、(Learning deep network representations with adversarially regularized autoencoders,KDD 2018)[65]。对于普通的图,大多数算法直接预先通过构建一个信息丰富[42]的矩阵(也就是点对互信息矩阵)得到一个邻接矩阵,或者把邻接矩阵填充到自编码模型,并捕获一阶和二阶信息[43]。对于属性图,图自编码模型利用GCN[14]作为一个构建块用于编码,并且通过链路预测解码器[62], [64]重构结构信息。

Graph Generative Networks (GGNs)-图生成网络

GGN旨在从数据中生成似乎合理的结构。生成给定图经验分布的图从根本上来说是具有挑战性的,主要因为图是复杂的数据结构。为了解决这个问题,研究员探索了将交替形成节点和边Graphrnn: A deep generative model for graphs,ICML 2018)[67], (Learning deep generative models of graphs,ICML 2018)[68]作为生成过程的因素,并借助(Molgan: An implicit generative model for small molecular graphs,2018)[69], (Netgan:Generating graphs via random walks,ICML 2018)[70]作为训练过程。GGN一个很有前途的应用领域是化合物合成。在化学图中,视原子为节点,化学键为边,任务是发现具有一定化学和物理性质的可合成的新分子。

Graph Spatial-temporal Networks (GSTNs)-图时空网络

GSTN从时空图中学习不可见的模式,在交通预测和人类活动预测等应用中越来越重要。例如,底层道路交通网络是一个自然图,其中每个关键位置是一个节点,它的交通数据是被连续监测的。通过建立有效的GSTN,能够准确预测整个交通的系统的交通状态[73],[74]。GSTN的核心观点是,同时考虑空间依赖性和时间依赖性。目前很多方法使用GCNs捕获依赖性,同时使用RNN[73],或者CNN[74]建模时间依赖关系。

3.2 框架

GNN,尤其是GCN,通过用谱图理论和空间局部性重新定义图卷积,试图在图数据上重复CNN的成功。使用图结构和节点信息作为输入,GCN的输出能够利用以下的一种机制用于不同的图分析任务:

  • Node-level
    Node-level的输出和点回归和分类任务相关。图卷积模模块直接给定节点的潜在表示,然后一个多层感知机或者softmax层用作GCN最后一层。图卷积模块可见4.1,4.2部分
  • Edge-level
    Edge-level的输出与边分类和链路预测任务相关。为了预测一条边的标签或者连接强度,附加函数从图卷积模块中提取两个节点的潜在表示作为输入。
  • Graph-level
    Graph-level的输出和图分类任务相关。池化模块用于粗化一个图为子图或者对节点表示求和/求平均,以获得图级别上的紧凑表示。图池化模块见4.3部分

表3列出了主要GCNs方法的输入和输出。特别对每种方法的GCN层和最后一层之间的输出机制进行了总结。输出机制可能涉及几个池化操作,这在后面讨论。

分类方法输入(是否允许边特征)输出输出机制
中间层最终层
Spectral-basedSpectral CNN(2014)[21]NGraph-levelcluster+max_poolingsoftmax 
ChebNet(2016)[12]NGraph-levelefficient pooling mlp layer +softmax
1stChebNet (2017) [14]NNode-levelactivation functionsoftmax 
AGCN (2018) [23]NGraph-levelmax_pooling sum pooling
Spatial-basedGNN (2009) [18]YNode-level~mlp layer +softmax
Graph-level~add a dummy super node
GGNNs (2015) [19]NNode-level~mlp layer /softmax
Graph-level~sum pooling
SSE (2018) [20]NNode-level~softmax 
MPNN (2017) [13]YNode-level~softmax 
Graph-level~sum pooling
GraphSage (2017) [25]NNode-levelactivation functionsoftmax 
DCNN (2016) [47]YNode-levelactivation functionsoftmax 
Graph-level~mean pooling
PATCHY-SAN (2016) [27]YGraph-level~mlp layer +softmax
LGCN (2018) [28]NNode-levelskip connectionsmlp layer+softmax

端到端训练框架:GCN可以在端到端学习框架中进行(半)监督或无监督的训练,取决于学习任务和标签信息的可用性。

  • node-level 半监督分类
    给定一个部分节点被标记而其他节点未标记的网络,GCN可以学习一个鲁棒的模型,有效地识别未标记节点[14]的类标签。为此,可以构建一个端到端的多分类框架,通过叠加几个图形卷积层,紧跟着一个softmax层。
  • graph-level 监督分类
    给定一个图数据集,图级分类旨在预测整个图[55],[56],[74],[75]的类标签(s),端到端学习框架,通过结合GCN和池化过程[55,56]实现。具体的,通过GCN获得每个图里每个节点固定维数的特征表示,然后,通过池化求图中所有节点的表示向量的和,以得到整个图的表示。最后,加上多层感知机和softmax层,可以构造一个端到端的图分类。图5(a)展示了这样一个过程。
  • 无监督graph embedding
    图中没有标签数据的时候,可以在端到端的框架中以无监督的方式学习一种graph embedding。这些算法以两种方式利用边级信息。一种简单的:利用自编码框架,编码器利用GCN将graph embedding到潜在的表示中,解码器利用潜在的表示重构图结构[59,61]。另一种方式:利用负采样方法,抽取一部分节点对作为负对,图中剩余的节点对作为正对,之后利用逻辑回归层,形成一个端到端的学习框架[24]。

4 图卷积网络

GCNs分为两类:spectral-based 和spatial-based,Spectral-based方法从图信号处理的角度[79](2013,The emerging field of signal processing on graphs:Extending high-dimensional data analysis to networks and other irregular domains)引入滤波器来定义图卷积,此使图卷积被解释为从图信号中去除噪声Spatial-based的方法将图卷积表示为来自邻居节点的特征信息的结合。GCNs在节点级作用时,图池化模块可以与GCN交错定义,将图粗化为高水平子结构。如图5(a)所示,这样一个结构设计能够提取图水平的表示并用于图分类任务。

4.1 基于图谱的GCN(Spectral-based Graph Convolutional Networks)

基于谱的方法在图信号处理中具有坚实的基础[79](2013)。首先介绍图信号处理的基本知识,然后回顾spectral-based GCNs的代表性成果。

4.1.1 图信号处理

归一化图拉普拉斯矩阵时一个图的一种鲁棒的数据表示,记为: L = I − D − 1 / 2 A D − 1 / 2 L=I-D^{-1/2}AD^{-1/2} L=ID1/2AD1/2,其中 A A A是图的邻接矩阵, D D D是一个节点度矩阵,记录每个节点的度,归一化拉普拉斯矩阵具有实对称半正定的性质。因此LL能够被分解为 L = U Λ U − 1 = U Λ U T L=U \Lambda U^{-1}=U \Lambda U^{T} L=UΛU1=UΛUT,其中 U = [ u 0 , u 1 , . . . , u n − 1 ] ∈ R N × N U=[u_0,u_1,...,u_{n-1}] \in \mathbb{R}^{N \times N} U=[u0,u1,...,un1]RN×N是根据特征值排序的特征向量组成的矩阵, Λ \Lambda Λ是特征值的对角矩阵, Λ i i = λ i \Lambda_{ii}=\lambda_i Λii=λi。图拉普拉斯矩阵的特征向量构成一个正交的空间,即 U T U = I U^TU=I UTU=I。在图信号处理中,图信号 x ∈ R N x \in \mathbb{R}^N xRN是图中第 i i i个节点 x i x_i xi的特征向量,信号 x x x的图傅里叶变换定义为 F ( x ) = U T x \mathcal{F}(x)=U^Tx F(x)=UTx,逆傅里叶变换为 F − 1 ( x ) = U x ^ \mathcal{F}^{-1}(x)=U \hat x F1(x)=Ux^, x ^ \hat x x^表示图傅里叶变换对信号 x x x的输出。从定义中可以看到,图拉普拉斯确实将图输入信号投影到正交空间,该正交空间的基根据 L L L的特征向量构成。变换后的信号 x ^ \hat x x^的元素表示新空间中图的坐标,因此,输入信号能够被表示为 x = ∑ i x ^ i u i x=\sum_i \hat x_i u_i x=ix^iui,实际上是图信号的逆傅里叶变换。因此,输入信号 x x x g ∈ R N g \in \mathbb{R}^N gRN滤波的图卷积为:

x ∗ g = F − 1 { F ( x ) ⋅ F ( g ) } = U ( ( U T g ) ⋅ ( U T x ) ) x * g=\mathcal{F}^{-1}{\{\mathcal{F}(x) \cdot \mathcal{F}(g) \}}=U((U^T g)\cdot(U^Tx)) xg=F1{F(x)F(g)}=U((UTg)(UTx))
⊙ \odot 表示hadamard product(哈达马积),对于两个向量,就是进行内积运算;对于维度相同的两个矩阵,就是对应元素的乘积运算。

如果定义一个滤波 g θ = d i a g ( U T g ) g_\theta=diag(U^T g) gθ=diag(UTg),图卷积就简化为

x ∗ g θ = U g θ U T x x*g_\theta=U g_{\theta} U^T x xgθ=UgθUTx
基于谱的GCN都遵循这个定义,不同的是滤波器 g θ g_\theta gθ的选择不同。

4.1.2 基于谱的GCN方法
Spectral CNN

谱CNN源于论文(J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on graphs,” in Proceedings of International Conference on Learning Representations, 2014),Bruna等人,第一次提出谱卷积神经网络。他们简单地把 g θ g_\theta gθ 看作是一个可学习参数的集合: g θ = Θ i , j k g_\theta=\Theta_{i,j}^k gθ=Θi,jk。并且假设图信号是多维的,图卷积层顶定义为:

X : , j k + 1 = σ ( ∑ i = 1 f k − 1 U Θ i , j k U T X : , i k ) ( j = 1 , 2 , ⋯   , f k ) X_{:,j}^{k+1} = \sigma(\sum_{i=1}^{f_{k-1}}U\Theta_{i,j}^kU^TX_{:,i}^{k})\quad \quad \quad (j=1,2,\cdots,f_k) X:,jk+1=σ(i=1fk1UΘi,jkUTX:,ik)(j=1,2,,fk)

  • X k ∈ R N × f k − 1 X^k\in \mathbb{R}^{N\times f_{k-1}} XkRN×fk1是输入图信号,对应图上就是点的输入特征
  • N N N是节点数量
  • f k − 1 f_{k-1} fk1是输入通道的数量
  • f k f_{k} fk是输出通道的数量
  • Θ i , j k \Theta_{i,j}^k Θi,jk是一个可学习参数的对角矩阵,就跟三层神经网络中的weight一样是任意的参数,通过初始化赋值然后利用误差反向传播进行调整
  • σ ( ⋅ ) \sigma(\cdot) σ()是激活函数

第一代的参数方法存在着一些弊端:主要在于:
(1)每一次前向传播,都要计算 U , d i a g ( θ l ) U,diag(\theta_l ) U,diag(θl) U T U^T UT三者的乘积,特别是对于大规模的graph,计算的代价较高,也就是论文 O ( n 3 ) \mathcal{O}(n^3) O(n3)的计算复杂度
(2)卷积核的spatial localization不好,这是相对第二代卷积核而言的,这里不多解释
(3)卷积核需要N个参数

由于以上的缺点第二代的卷积核设计应运而生。

Chebyshev谱CNN(ChebNet)

Chebyshev谱CNN源于论文(M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,”in Advances in Neural Information Processing Systems, 2016)。Defferrard等人提出ChebNet,定义特征向量对角矩阵的切比雪夫多项式为滤波器,也就是

g θ = g θ ( Λ ) ≈ ∑ i = 1 K θ i T k ( Λ ~ ) g_θ=g_θ(Λ) \approx \sum^{K}_{i=1} \theta_i T_k(\tilde Λ) gθ=gθ(Λ)i=1KθiTk(Λ~)
其实,就是利用Chebyshev多项式拟合卷积核的方法,来降低计算复杂度。

  • Λ ~ = 2 Λ / λ m a x − I N \tilde Λ = 2Λ / λ_{max}− I_N Λ~=2Λ/λmaxIN
  • θ i \theta_i θi是Chebyshev多项式的系数
  • T k ( Λ ~ ) T_k(\tilde Λ) Tk(Λ~) 是取 Λ ~ = 2 Λ / λ m a x − I N \tilde Λ = 2Λ / λ_{max}− I_N Λ~=2Λ/λmaxIN的Chebyshev多项式,因为要进行这个变换的前提是Chebyshev多项式的输入要在[-1,1]之间。

根据Chebyshev多项式的性质,可以得到如下递推式:

T k ( x ) = 2 x T k − 1 ( x ) − T k − 2 ( x ) T 0 ( x ) = 1 , T 1 ( x ) = x T_k(x) = 2xT_{k−1}(x) − T_{k−2}(x) \\ T_0(x)=1, T_1(x)=x Tk(x)=2xTk1(x)Tk2(x)T0(x)=1T1(x)=x
于是,可得信号x的卷积为:

x ∗ g θ = U ( ∑ i = 1 K ) θ i T k ( Λ ~ ) U T x = ∑ i = 1 K θ i T i ( L ~ ) x x*g_\theta = U(\sum_{i=1}^K)\theta_iT_k(\widetilde{\Lambda})U^Tx \\ =\sum_{i=1}^{K}\theta_iT_i(\widetilde{L})x xgθ=U(i=1K)θiTk(Λ )UTx=i=1KθiTi(L )x
其中, L ~ = 2 L / λ m a x − I N \widetilde{L} = 2L/\lambda_{max} - I_N L =2L/λmaxIN
从上式中,ChebNet避免计算图傅里叶的基,将计算复杂度从 O ( n 3 ) \mathcal{O}(n^3) O(n3)降到 O ( K M ) \mathcal{O}(KM) O(KM)(M是边的数量)。由于 T i ( L ~ ) T_i(\widetilde{L}) Ti(L ) L ~ \widetilde{L} L i i i阶多项式,所以 T i ( L ~ ) x T_i(\widetilde{L})x Ti(L )x作用于每个节点的局部,所以ChebNet滤波器在空间是局部化的。

一阶ChebNet(1stChebNet)

一阶ChebNet源于论文(T. N. Kipf and M.Welling, “Semi-supervised classification with graph convolutional networks,” in Proceedings of the International Conference on Learning Representations, 2017)Kipf等人引入了一种一阶近似ChebNet。假设 K = 1 , λ m a x = 2 K=1,\lambda_{max}=2 K=1,λmax=2,上式简化近似为:

x ∗ g θ = θ 0 x − θ 1 D − 1 / 2 A D − 1 / 2 x x*g_\theta = \theta_0x - \theta_1 D^{− 1 /2} AD^{− 1 /2}x xgθ=θ0xθ1D1/2AD1/2x
为了抑制参数数量防止过拟合,1stChebNet假设 θ = θ 0 = θ 1 \theta=\theta_0=\theta_1 θ=θ0=θ1,图卷积的定义就近似为:

g θ ∗ x = θ ( I N + D − 1 / 2 A D − 1 / 2 ) x g_θ * x = θ (I_N + D^{− 1 /2} AD^{− 1 /2} ) x gθx=θ(IN+D1/2AD1/2)x
为了融合多维图输入信号,1stChebNet对上式进行修正提出了图卷积层:

X k + 1 = A ~ X k Θ X^{k+1} = \widetilde{A}X^{k}\Theta Xk+1=A XkΘ
其中, A ~ = I N + D − 1 2 A D − 1 2 \widetilde{A} = I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} A =IN+D21AD21(原论文里的是 A ~ = A + I N \tilde A=A+I_N A~=A+IN)

1stChebNet CGN也是空间局部化的,弥补了谱方法和空间方法的差距。输出的每一行表示一个节点的潜在表示,通过节点自身和邻居节点的加权聚合计算得到,其中权重是通过 A ~ \tilde A A~
的特定行决定的。从基于空间的方法来看,邻居矩阵 A ~ \tilde A A~并不一定需要是对称矩阵,例如可以是 D − 1 A D^{-1}A D1A
1stChebNet的主要缺点是在批训练时,随着1stChebNet层数的增加,计算消耗成指数增加。最后一层的每一个节点都必须递归的在以前层中扩展他的邻居节点。
Chen et al.[48](J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,”,ICLR 2018)假设1stChebNetD多维的图卷积方程中重新调整的邻接矩阵 A ~ \tilde A A~来自采样分布。这样就可以使用蒙特卡洛和方差约减技术加速训练过程。
Chen et al.[49](J. Chen, J. Zhu, and L. Song, “Stochastic training of graph
convolutional networks with variance reduction,”,ICML 2018 )通过邻域采样和原来的隐藏表示将GCN的感受野缩小到任意小size。
Huang et al.[57](W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling
towards fast graph representation learning,”,NIPS,2018)提出了一种自适应分层抽样方法来加速1stChebNet的训练,其中低层的抽样以高层的抽样为条件。该方法也适用于显式方差约简。

Adaptive Graph Convolution Network (AGCN)

自适应GCN(AGCN)为了探索图拉普拉斯矩阵为指明的隐藏结构,Li等人[23](R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional neural networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2018)提出了自适应图卷积网络(AGCN)。AGCN利用所谓的残差图来扩充图,残差图是通过计算节点对的距离来构造的。尽管AGCN能够捕获互补关系信息,但是以 O ( N 2 ) O(N^2) O(N2)的计算量为代价。

4.1.3 总结

谱CNN(J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on graphs,” in Proceedings of International Conference on Learning Representations, 2014)依赖于拉普拉斯矩阵的特征分解。主要有三个问题:首先,对图的任何扰动都会导致特征基的变化。其次,学习的过滤器依赖于不同领域,这意味着它们不能应用于具有不同结构的图。第三,特征分解需要 O ( N 3 ) O(N^3) O(N3)计算和 O ( N 2 ) O(N^2) O(N2)内存。由ChebNet(M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,”in Advances in Neural Information Processing Systems, 2016)和1stChebNet(T. N. Kipf and M.Welling, “Semi-supervised classification with graph convolutional networks,” in Proceedings of the International Conference on Learning Representations, 2017)定义的过滤器具有空间局部性,学习到的权重可以在图中的不同位置共享。然而,谱方法的一个常见缺点是需要将整个图加载到内存中进行图卷积,这在处理大图时效率不高

4.2 基于空间的GCN(Spatial-based Graph Convolutional Networks)

根据传统CNN在图像上的卷积操作,基于空间的GNN基于一个节点的空间关系定义图卷积算子。将图像看作特殊图形式,每个像素代表一个节点,如图1(a)所示,每个像素与附近的像素直接相连,如果用一个3×3窗口取块,每个节点的邻居节点就是其周围的八个像素,将滤波器作用于3×3块,则每个通道中心像素的值就是3×3块内像素的加权平均值。由于相邻结点有固定的顺序,所以可训练权重能够在不同的局部空间共享。如图1(b)所示,对于一般图结构,中心结点的表示也是根据其邻居结点的聚合结果表示。

  • (a)2-D卷积。与图类似,将像素中的每个像素作为一个节点,像素的邻居节点由滤波器的大小决定。2-D卷积计算的是由红色节点和其邻居节点像素的加权平均值。节点的邻居都是有序的并且有固定大小
  • (b)图卷积。为了得到红色节点的隐式表示,图卷积算子的一个简单方法是取红色节点及其邻居节点的特征的平均值。与图像数据不同,节点的邻居是无序的且大小是可变的

为了探索结点感受野的深度和宽度,通常叠加多个GCL(图卷积层),根据叠加方法的不同,将基于空间的GCN分成两个类别,基于循环(recurrent-based)和基于合成(composition-based)的空间GCNs。基于循环的GCN使用一个相同的GCL个更新隐含表示,基于合成GCN则使用不同的GCL更新隐含表示。图7展示了这种不同。

4.2.1 基于循环的空间GCNs

基于循环的方法的主要思想是循环地更新节点的潜在表示,直到达到稳定的不动点

通过对循环函数[18](F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2009)施加约束、使用门循环单元架构[19](Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural networks,” in Proceedings of the International Conference on Learning Representations, 2015)、异步和随机更新节点潜在表示[20](H. Dai, Z.Kozareva, B. Dai, A. Smola, and L. Song, “Learning steady-states of iterative algorithms over graphs,” in Proceedings of the International Conference on Machine Learning, 2018, pp. 1114–1122.)来实现。

Graph Neural Networks(GNNs)

GNNs作为最早研究图神经网络的方法,通过循环地个更新结点潜在表示直到收敛[18]来实现。换句话说,从传播的角度来说,每个结点与邻居结点交换信息,直到信息均衡。GNNs的图卷积算子定义如下,能够处理异构图形:

h v t = f ( I v , I c o [ v ] , h n e t − 1 , I n e [ v ] ) h_v^t = f(I_v,I_{co}[v],h_{ne}^{t-1},I_{ne}[v]) hvt=f(Iv,Ico[v],hnet1,Ine[v])
其中

  • I v I_v Iv是节点 v v v的标签属性
  • I c o [ v ] I_{co}[v] Ico[v]表示节点 v v v相关边的标签属性
  • h n e t h_{ne}^{t} hnet表示结点 v v v的邻居结点在 t t t步的隐含表示
  • I n e [ v ] I_{ne}[v] Ine[v]表示节点 v v v邻居节点的标签属性。

为了确保收敛,循环函数 f ( ⋅ ) f(⋅) f()必须是一个压缩映射,映射后能够缩小两点之间的距离。当 f ( ⋅ ) f(⋅) f()为神经网络时,对参数的雅可比矩阵必须加罚项。GNNs采用Almeida-Pineda算法[80](A learning rule for asynchronous perceptrons with feedback in a combinatorial environment,1987)、, [81](Generalization of back-propagation to recurrent neural networks,1987)对模型进行训练。其核心思想是运行传播过程以达到不动点,然后执行给定收敛解的反向过程。

Gated Graph Neural Networks (GGNNs)

门控GNN(GGNNs)采用门控循环单元(GRU)[82](Learning phrase representations using rnn encoder-decoder for statistical machine translation)作为循环函数,将循环减少到固定步数。GGNNs的空间图卷积定义为:

h v t = G R U ( h v t − 1 , ∑ u ∈ N ( v ) W h u t ) h_v^t = GRU(h_v^{t-1},\sum_{u\in N(v)}Wh_u^t) hvt=GRU(hvt1,uN(v)Whut)
与GNNs不同,GGNNs使用时间反向传播(BPTT)来学习参数,不需要约束参数确保收敛。但是BPTT训练带了时间和内存效率的损失。对于大型图来说,问题尤其严重,因为GGNNs需要在所有节点上多次运行循环函数,需要将所有节点的中间状态存储在内存中。

Stochastic Steady-state Embedding (SSE)

为了提高学习效率,随机稳态嵌入SSE算法[20](H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning steady-states of iterative algorithms over graphs,” in Proceedings of the International Conference on Machine Learning,2018)以异步方式随机更新节点潜在表示。如算法1所示,SSE递地归估计节点潜在表示,并使用随机取样的批数据更新参数。为确保收敛到稳态,SSE的循环函数定义为历史状态和新状态的加权平均:

h v t = ( 1 − α ) h v t − 1 + α W 1 σ ( W 2 [ x v , ∑ u ∈ N ( v ) [ h u t − 1 , x u ] ] ) ( 10 ) h_v^t = (1-\alpha)h_v^{t-1} + \alpha W_1\sigma(W_2[x_v,\sum_{u\in N(v)}[h_u^{t-1},x_u]]) \qquad (10) hvt=(1α)hvt1+αW1σ(W2[xv,uN(v)[hut1,xu]])(10)

虽然将邻域信息加起来隐式地考虑了节点的度,但是求和的这种测度是否影响了算法的稳定性仍然值得探究。

4.2.2 基于合成的空间GCNs

基于合成的方法通过叠加多个图的卷积层来更新节点的表示

Message Passing Neural Networks (MPNNs)

消息传递神经网络(MPNNs)[13](Neural message passing for quantum chemistry,ICML 2017):Gilmer等人将现有的[12]、[14]、[19]、[21]、[56]、[83]、[84]等几个图卷积网络归纳为一个统一的框架,称为消息传递神经网络(MPNNs)。MPNNs由两个阶段组成,消息传递阶段和读出阶段。消息传递阶段实际上是,运行T步基于空间的图卷积,卷积算子由消息函数 M t ( ⋅ ) M_t(⋅) Mt()和更新函数 U t ( ⋅ ) U_t(⋅) Ut()定义:

h v t = U t ( h v t − 1 , ∑ w ∈ N ( v ) M t ( h v t − 1 , h w t − 1 , e v w ) ) h_v^t = U_t(h_v^{t-1},\sum_{w\in N(v)}M_t(h_v^{t-1},h_w^{t-1},e_{vw})) hvt=Ut(hvt1,wN(v)Mt(hvt1,hwt1,evw))
读出阶段实际上是一个池操作,根据每个节点隐含表示生成整个图的表示。

y ^ = R ( h v T ∣ v ∈ G ) \widehat{y} = R(h_v^T|v\in G) y =R(hvTvG)
通过输出函数 R ( ⋅ ) R(⋅) R()生成输出 y ^ \widehat{y} y ,可以用于graph-level(图级)任务。通过假设不同形式的 U t ( ⋅ ) M t ( ⋅ ) U_t(⋅) M_t(⋅) Ut()Mt(),作者提出了一些其他的GCN。

GraphSage

GraphSage[25](W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Advances in Neural Information Processing Systems, 2017)引入聚合函数的概念定义图形卷积。聚合函数本质上是聚合节点的邻域信息,需要满足对节点顺序的排列保持不变,例如均值函数,求和函数,最大值函数都对节点的顺序没有要求。图的卷积运算定义为:

h v t = σ ( W t ⋅ a g g r e g a t e k ( h v t − 1 , ∀ u ∈ N ( v ) ) ) h_v^t = \sigma(W^t\cdot aggregate_k(h_v^{t-1},\forall u \in N(v))) hvt=σ(Wtaggregatek(hvt1,uN(v)))
GraphSage没有更新所有节点上的状态,而是提出了一种批处理训练算法,提高了大型图的可扩展性。GraphSage的学习过程分为三个步骤。首先,对一个节点的K-跳邻居节点取样,然后,通过聚合其邻居节的信息表示中心节点的最终状态,最后,利用中心节点的最终状态做预测和误差反向传播。如图8所示k-hop,从中心节点跳几步到达的顶点。

假设在第t-hop取样的邻居个数是 s t s_t st,GraphSage一个batch的时间复杂度是 O ( ∏ t = 1 T s t ) O(\prod_{t=1}^Ts_t) O(t=1Tst)。因此随着 t t t的增加计算量呈指数增加,这限制了GraphSage朝深入的框架发展。但是实践中,作者发现 t = 2 t=2 t=2已经能够获得很高的性能。

4.2.3 空间GCNs的其他变体
Diffusion Convolution Neural Networks (DCNN)

扩散卷积神经网络(Diffusion Convolution Neural Networks (DCNN)): DCNN[47](J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in Advances in Neural Information Processing Systems, 2016)提出了一种封装了图扩散过程的图卷积网络。将输入与转移概率矩阵的幂级数进行独立卷积,得到一个隐藏节点表示。DCNN的扩散卷积运算可以表示为

Z i , j , : m = f ( W j , : ⊙ P i , j , : m X i , : m ) Z_{i,j,:}^m = f(W_{j,:}\odot P_{i,j,:}^m X_{i,:}^m) Zi,j,:m=f(Wj,:Pi,j,:mXi,:m)

  • Z i , j , : m Z_{i,j,:}^m Zi,j,:m表示图 m m m中节点 i i i的第j−hop因隐层表示
  • P i , j , : m P_{i,j,:}^m Pi,j,:m表示图 m m m的j−hop转移概率矩阵
  • X i , : m X_{i,:}^m Xi,:m是图 m m m中节点 i i i的输入特征
  • Z m ∈ R N m × H × F , W ∈ R H × F , P m ∈ R N m × H × N m , X m ∈ R N m × F Z^m\in R^{N_m\times H\times F},W\in R^{H\times F},P^m \in R^{N_m\times H\times N_m},X^m \in R^{N_m \times F} ZmRNm×H×F,WRH×F,PmRNm×H×Nm,XmRNm×F

尽管通过更高阶的转移矩阵覆盖更大的感受野,DCNN模型需要 O ( N m 2 H ) O(N_m^2 H) O(Nm2H)的内存,当用在大图上的时候会引发严重的问题。

PATCHY-SAN

PATCHY-SAN[27](M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks for graphs,” in Proceedings of the International Conference on Machine Learning, 2016)使用标准CNN来解决图像分类任务。为此,它将图结构化数据转换为网格结构数据。首先,它使用图标记过程为每个图选择固定数量的节点。图标记过程本质上是为图中每个节点排序,排序可以根据节点度,中心,WeisfeilerLehman颜色 [85],[86]等。然后PATCHY-SAN根据上述图标记结果为每个节点选择和排序固定数量的邻居节点。最后,固定大小的网格数据形成以后,PATCHY-SAN利用标准CNN学习图的隐层表示。GCNs中利用标准CNN能过保持平移不变性,仅依赖于排序函数。因此,节点选择和排序的标准至关重要。PATCHY-SAN中,排序是基于图标记的,但是图标记值考虑了图结构,忽略了节点的特征信息。

Large-scale Graph Convolution Networks

大规模图卷积网络LGCN[28](H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional networks,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM,2018)提出了一种基于节点特征信息的排序方法。LGCN使用标准的CNN生成node-level(节点级)输出。对于每个节点,LGCN集成其邻居节点的特征矩阵,并沿着特征矩阵的每一列进行排序,排序后的特征矩阵的前k行作为目标节点的输入网格数据。最后LGCN对合成输入进行1D-CNN得到目标节点的隐藏输入PATCHY-SAN中得到图标记需要复杂的预处理,但是LGCN不需要,所以更高效。LGCN提出一个子图训练策略以适应于大规模图场景,做法是将采样的小图作为mini-batch。

Mixture Model Network (MoNet)

混合模型网络MoNet[26](F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.Bronstein, “Geometric deep learning on graphs and manifolds using mixture model cnns,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017)用非欧式距离领域的卷积结构统一了标准CNN。因为一些基于空间的方法在整合邻居节点信息的时候忽略了节点与其邻居节点之间的相对位置,所以MoNet引入了伪坐标和权值函数,从而使节点邻居的权重取决于节点和邻居节点的相对位置,也就是伪坐标。在这样一个框架下,从MoNet推广了一些基于流形的方法,可以看作MoNet的特例,如Geodesic CNN(GCNN)[87],各向异性Anisotropic CNN(ACNN)[88],Spline CNN[89],以及对于GCN [14], DCNN[47]等。但是这些MoNet框架下的方法都是固定的权重函数,因此MoNet提出了一种具有可学习参数的高斯核函数自由调整权重函数。

4.2.4 总结

基于空间的方法通过聚合邻居的特征信息来定义图卷积。根据图卷积层的不同叠加方式,将空间法分为循环法和合成法两大类。基于循环的方法致力于获得节点的稳定状态,基于合成的方法致力于合并更高阶的邻域信息训练过程中,两大类的每一层都需要更新所有节点的隐层状态。因为要在内存中保存所有的中间状态,因此效率不高。为了解决这个问题,提出了一些训练方法,包括基于合成的方法中的组图训练,如GraphSage,基于循环方法的随机异步训练,如SSE。

4.3 图池化模块-Graph Pooling Modules

将CNN推广到图结构数据的时候,图池化模块也至关重要,对graph-level(图级)分类任务[58], [59], [91]来说尤其重要。Xu等[92]认为在区分图结构方面池辅助的GCN和Weisfeiler-Lehman测试[85]一样强大。与CNN中的池化层一样,GCN的图池化模块也能够对原始特征数据进行下采样,容易降低方差和计算复杂度。由于池窗口中计算均值/最大值/求和的速度很快,因此均值/最大值/求和池是实现此功能最原始、最有效的方法。

h G = m e a n / m a x / s u m ( h 1 T , h 2 T , ⋯   , h n T ) h_G = mean/max/sum(h_1^T,h_2^T,\cdots ,h_n^T) hG=mean/max/sum(h1T,h2T,,hnT)
Henaff等人[22]证明在一开始使用简单的max/mean池化对于降低图域的维度非常重要,并且能够缓解图傅里叶变换的巨大复杂度开销。

Defferrard等人在他们的方法ChebNet[12]中优化了最大/最小池化并提出了一种有效的池化策略。首先对输入图进行如图5(a)所示的粗化过程处理,然后将输入图的顶点和粗化后的图进行转换为一个平衡二叉树,在最粗的层次上对节点任意地排序,然后将这个排序传播到平衡二叉树的较低层次,最后会在最细的层次上产生一个规则的排序。对重新排列的1D信号进行池化比对原始信号池化更高效。

Zhang等人提出了一种DGCNN[58]框架,同样对重新排列为有意义顺序的顶点进行池化,与上述池化策略类似,叫SortPooling。不同于ChebNet[12],DCGNN根据节点在图中的结构角色(结构特点)进行分类。将图空间卷积得到的无序节点特征看作连续的WL colors[85],以此进行节点排序。除此之外,还会将图特征向量或截断或扩展到固定图大小k。如果 n > k n>k n>k,则将最后 k − n k−n kn行删除,反之,如果 n < k n<k n<k,则在最后 k − n k−n kn行补0。这种方法通过解决一个有挑战性的底层图结构任务,也就是排列不变,增强了图池化,从而提高了GCNs的性能。Verma和Zhang提出了图胶囊网络[93],进一步探讨了图数据的排练不变问题。

最近提出的DIFFPOOL[59]池化模块能够生成图的层次表示,并且在端到端的模式种能够与CNNs和各种GNNs结构结合。DIFFPOOL不像其他粗化方法一样对一个图种的节点进行简单的聚类,而是在一组输入图种提供一种通用的方法对节点进行层次化池化。通过学习l层上的簇分配矩阵S实现, S ( l ) ∈ R n 1 × n 1 + 1 S^{(l)}\in R^{n_1\times n_1+1} S(l)Rn1×n1+1。两个包含输入簇节点特征 X ( l ) X^{(l)} X(l)和粗化邻接矩阵 A ( l ) A^{(l)} A(l)的独立的GNN用来生成分配矩阵 S ( l ) S^{(l)} S(l)和embedding矩阵 Z ( l ) Z^{(l)} Z(l)

Z ( l ) = G N N l , e m b e d ( A ( l ) , X ( l ) ) S ( l ) = s o f t m a x ( G N N l , p o o l ( A ( l ) , X ( l ) ) ) Z^{(l)} = GNN_{l,embed}(A^{(l)},X^{(l)})\\S^{(l)} = softmax(GNN_{l,pool}(A^{(l)},X^{(l)})) Z(l)=GNNl,embed(A(l),X(l))S(l)=softmax(GNNl,pool(A(l),X(l)))
任何标准的GNN模型都能够实现上述两个公式,每个GNN模型处理相同的输入数据,但是因为在框架的作用不同,所以有不同的参数。 G N N l , e m b e d GNN_{l,embed} GNNl,embed生成新的embedding, G N N l , p o o l GNN_{l,pool} GNNl,pool生成输入节点分配到 n l + 1 n_{l+1} nl+1簇的概率。softmax函数对上述第二个公式按行操作,这样, S ( l ) S^{(l)} S(l)的每一行为 l l l层的 n l n_{l} nl节点(或簇), S ( l ) S^{(l)} S(l)每一列的对应下一层的一个 l l l。一旦确定了 Z ( l ) Z^{(l)} Z(l) S ( l ) S^{(l)} S(l),池化操作定义如下:

X ( l + 1 ) = S ( l ) T Z ( l ) ∈ R n l + 1 × d A ( l + 1 ) = S ( l ) T A ( l ) S ( l ) ∈ R n l + 1 × n l + 1 X^{(l+1)} = S^{(l)^T}Z^{(l)}\in R^{n_{l+1}\times d} \\ A^{(l+1)} = S^{(l)^T}A^{(l)}S^{(l)}\in R^{n_{l+1}\times n_{l+1}} X(l+1)=S(l)TZ(l)Rnl+1×dA(l+1)=S(l)TA(l)S(l)Rnl+1×nl+1
第一个公式根据簇分配矩阵 S ( l ) S^{(l)} S(l)聚合embedding Z ( l ) Z^{(l)} Z(l),以计算 n l + 1 n_{l+1} nl+1簇的gembedding。节点表示作为初始簇embedding。第二个公式,将 A ( l ) A^{(l)} A(l)作为输入,生成粗化邻接矩阵,表示簇之间的连接强度。

总的来说,DIFFPOOL利用两个GNN重新定义了图池化模型对节点进行聚类。所有的GCN模型都能够与DIFFPOOL结合,不仅能够提高性能,而且能够加速卷积过程。

4.4 基于谱和空间的GCNs的对比

基于谱的模型作为针对图数据最早期的卷积网络在很多图相关的分析任务种取得了非常好的效果,这种模型最吸引人的地方在于在图信号处理领域奠定了一个理论基础。通过涉及新的图信号滤波器[24](R.Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets:Graph convolutional neural networks with complex rational spectral filters,” IEEE Transactions on Signal Processing, vol. 67,no. 1, pp. 97–109, 2017),能够理论地设计新的GCNs。但是,从效率,通用性和灵活性三个方面来说,基于谱的方法有一些缺点。

效率
基于谱的方法的计算量会随着图的大小急剧增加,因为模型需要同时计算特征向量[[21]或者同时处理大图,这就使得模型很难对大图进行并行处理或缩放。基于空间的图方法由于直接对图域的邻居节点进行聚合,所以有潜力处理大图,方法是对一个batch数据计算而不是在整个图上计算。如果邻居节点的数量增加,能够通过采样技术GraphSage、LGCN[25,28] 提高效率。

通用性
基于谱的图方法假设图是固定的,因此对新的或者不同的图泛化性能很差。基于空间的方法在每个节点上进行局部图卷积,权值可以很容易地在不同地位置和结构之间共享。

灵活性
基于谱的模型只适用于无向图,谱方法用于有向图的唯一方法是将有向图转换为无向图(因为没有有向图的拉普拉斯矩阵明确的定义)。基于空间的模型可以将输入合并到聚合函数中(如[13]、[17]、[51]、[52]、[53]),所以在处理多源输入像是边特征边方向上更灵活。

因此,近年来,基于空间的方法更受关注。

5 超越GCNs的架构(Beyond Graph Convolutional Networks)

在这一节中,将对其他的图神经网络,包括图注意力神经网络、图自动编码器、图生成网络和图时空网络进行回顾。表4总结了每个类别的主要方法。

5.1 图注意力网络(Graph Attention Networks)

注意力机制成为基于序列的任务的标准[94](Attention is all you need,NIPS 2017),其优点是能够集中注意目标最重要的部分,在很多应用,如机器翻译,自然语言理解等都已经证明注意力机制的有效性。由于注意力机制模型容量的增加,图神经网络也因此受益,它可以在聚合过程中使用注意力,集成多个模型的输出,并生成面向重要性的随机游走。本节将讨论如何在图结构数据中使用注意力机制。

5.1.1 图注意力网络的方法(Methods of Graph Attention Networks)
Graph Attention Network (GAT)-图注意力网络

图注意网络(GAT)[15](ICLR 2017,Graph attention networks)是一种基于空间的图卷积网络,在聚合节点的邻居信息的时候使用注意力机制确定每个邻居节点对中心节点的重要性,也就是权重。定义如下:

h i t = σ ( ∑ j ∈ N i α ( h i t − 1 , h j t − 1 ) W t − 1 h j t − 1 ) h_i^t = \sigma(\sum_{j\in N_i}\alpha(h_i^{t-1},h_j^{t-1})W^{t-1}h_j^{t-1}) hit=σ(jNiα(hit1,hjt1)Wt1hjt1)
其中 α ( ⋅ ) \alpha(\cdot) α()表示注意力函数,能够自动控制邻居节点 j j j对中心节点的 i i i的贡献。为了学习不同子空间的注意力信息,GAT 使用multi-head注意力方式,并使用||concat方式对不同注意力节点进行整合。

h i t = ∥ k = 1 K σ ( ∑ j ∈ N i α k ( h i t − 1 , h j t − 1 ) W k t − 1 h j t − 1 ) h_i^t = \|_{k=1}^K\sigma(\sum_{j\in N_i}\alpha_k(h_i^{t-1},h_j^{t-1})W_k^{t-1}h_j^{t-1}) hit=k=1Kσ(jNiαk(hit1,hjt1)Wkt1hjt1)

Gated Attention Network (GAAN)-门控注意力网络

GAAN(Gaan:Gated attention networks for learning on large and spatiotemporal graphs,2018)[29]也利用multi-head注意力的方式更新节点的隐层状态。与GAT为各种注意力设置相同的权重进行整合的方式不同,GAAN引入self-attention机制对每一个head,也就是每一种注意力,计算不同的权重,规则如下:

h i t = ϕ o ( x i ⊕ ∥ k = 1 K g i k ∑ j ∈ N i α k ( h i t − 1 , h j t − 1 ) ϕ v ( h j t − 1 ) ) h_i^t = \phi_o(x_i\oplus\|_{k=1}^Kg_i^k\sum_{j\in N_i}\alpha_k(h_i^{t-1},h_j^{t-1})\phi_v(h_j^{t-1})) hit=ϕo(xik=1KgikjNiαk(hit1,hjt1)ϕv(hjt1))
其中, ϕ o ( ⋅ ) \phi_o(\cdot) ϕo() ϕ v ( ⋅ ) \phi_v(\cdot) ϕv()表示前馈神经网络, g i k g_i^k gik表示第 k k k个注意力head的权重。

Graph Attention Model (GAM)-图注意力模型

GAM[60]提出一种循环神经网络解决图分类问题,通过自适应访问重要节点序列处理图中信息丰富的部分。定义如下:

h t = f h ( f s ( r t − 1 , v t − 1 , g ; θ s ) , h t − 1 ; θ h ) h_t= f_h(f_s(r_{t-1},v_{t-1},g;\theta_s),h_{t-1};\theta_h) ht=fh(fs(rt1,vt1,g;θs),ht1;θh)
其中 f h ( ⋅ ) f_h(⋅) fh()是一个LSTM网络, f s f_s fs是一个从当前节点 v t − 1 v_{t-1} vt1到他的一个邻居节点 c t c_t ct的阶跃网络,邻居节点优先考虑策略网络生成的 v t − 1 v_{t-1} vt1中级别较高的类型

r t = f r ( h t ; θ r ) r_t= f_r(h_t;\theta_r) rt=fr(ht;θr)
其中 r t r_t rt是表示节点重要性的随机排序向量,需要以高度优先进一步探讨。 h t h_t ht包含节点从图探索中聚合的历史信息,用来对图标签进行预测。

Attention Walks

注意力游走[61](Watch
your step: Learning node embeddings via graph attention,NIPS 2018)通过随机游走学习节点embedding。不用于使用固定先验的深度游走(DeepWalk[41](Deepwalk: Online learning of social representations,ACM SIGKDD 2014))不同,注意利用游走对differentiable(可微的)注意力权重的共生矩阵进行分解:

E [ D ] = P ~ ( 0 ) ∑ k = 1 C a k ( P ) k E[D] = \widetilde{P}^{(0)}\sum_{k=1}^Ca_k(P)^k E[D]=P (0)k=1Cak(P)k
其中

  • D D D表示共生矩阵
  • P ~ ( 0 ) \widetilde{P}^{(0)} P (0)表示初始位置矩阵
  • P P P表示概率转移矩阵。
5.1.2 总括

注意力机制对GNN的贡献分为三个方面,在聚合特征信息的时候对不同的邻居节点分配不同的权值,根据注意力权重集成多个模型,使用注意力权重指导随机游走。尽管将GAT[15](ICLR 2017,Graph attention networks)和GAAN[29](Gaan:Gated attention networks for learning on large and spatiotemporal graphs,2018)归为图的注意网络的范畴,它们也同时是基于空间的GCN。GAT和GAAN的优点是可以自适应学习邻居的重要性权重,如图6所示。但是,由于必须计算每对邻居之间的注意力权重,计算成本和内存消耗迅速增加。

图6展示了GCN和GAN在聚合邻居节点信息时候的不同。

  • (a)图卷积网络[14](2017,Semi-supervised classification with graph convolutional networks)在聚集过程中很清楚地分配了一个非参数的权重 a i j = 1 d e g ( v i ) d e g ( v j ) a_{ij}=\frac{1}{\sqrt{deg(v_i)deg(v_j)}} aij=deg(vi)deg(vj) 1 v i v_i vi的邻居 v j v_j vj
  • (b)图形注意力网络[15](ICLR 2017,Graph attention networks)通过端到端的神经网络结构隐式地捕获 a i j a_{ij} aij的权重,以便更重要的节点获得更大的权重。

5.2 图自编码器

network embedding致力于使用神经网络架构将网络顶点在低维向量空间进行表示,图自编码是network embedding的一种类型。典型做法是利用多层感知机作为编码器,获得节点embedding,然后解码器据此重构节点的邻域统计信息,如正点态互信息(positive pointwise mutual information, PPMI)[42]或一阶和二阶近似[43]。近期,研究员探索将GCN[14]作为编码器,设计图自编码器的时候或结合HCN与GAN[95],或结合GAN[95]与LSTM[7]。首先回顾基于GCN的自编码器,然后总结该分类的其他变体。

5.2.1 基于GCN的自编码器
Graph Auto-encoder (GAE)

GAE[62](Variational graph auto-encoders,2016)最早将GCN[14](2017,Semi-supervised classification with graph convolutional networks)整合到图自编码框架。编码器定义为:

Z = G C N ( X , A ) Z=GCN(X,A) Z=GCN(X,A)
解码器定义为:

A ^ = σ ( Z Z T ) \widehat{A} = \sigma(ZZ^T) A =σ(ZZT)
GAE的框架在图5b展示。可以用变分的方式训练GAE,也就是最小化变分下界L:

L = E q ( Z ∣ X , A ) [ l o g p ( A ∣ Z ) ] − K L [ q ( Z ∣ X , A ) ∥ p ( Z ) ] L = E_{q(Z|X,A)}[log_p(A|Z)]-KL[q(Z|X,A)\|p(Z)] L=Eq(ZX,A)[logp(AZ)]KL[q(ZX,A)p(Z)]

Adversarially Regularized Graph Autoencoder (ARGA)

对抗正则化图自编码器(ARGA)[64](Adversarially regularized graph autoencoder for graph embedding):ARGA利用GANs[95]的训练方案正则化图自编码器。其中,编码器用节点的特征编码其结构信息,也就是GCNGCN[14](2017,Semi-supervised classification with graph convolutional networks)中的隐层表示,然后解码器从编码器的输出中重构邻接矩阵。GANs在训练生成模型的时候在生成和判别模型之间进行一个最小-最大博弈。生成器尽可能生成真实的“伪样本”,而判别器则尽可能从真实样本中识别”伪样本“。GAN帮助ARGA正则化节点学习到的隐藏表示遵循先验分布。具体来说,编码器像生成器,尽可能使学习的节点的隐藏表示与真实的先验分布难以区分,解码器,可以看作判别器,尽可能识别所有的隐藏节点表示,无论节点隐藏是从编码器生成的还是从一个真实的先验分布得到的。

5.2.2 图自编码的其他变体
Network Representations with Adversarially Regularized Autoencoders (NetRA)

对抗正则化自编码器网络表示(NetRA)[65](Learning deep network representations with adversarially regularized autoencoders,ACM 2018):NetRA是与ARGA思想相似的一种图自编码框架,也是通过对抗训练正则化节点隐藏表示遵循一种先验分布。这种方法采用序列-序列结构[96]恢复从随机游走种取样的节点序列,而不是重构邻接矩阵。

Deep Neural Networks for Graph Representations(DNGR)

图表示深度神经网络(DNGR)[42](Deep neural networks for learning graph representations,2016)通过堆叠去噪自编码[97]重构点态互信息矩阵(PPMI)。当图被随机游走序列化后,PPMI矩阵本质上捕获节点的共存信息。形式上,PPMI矩阵定义为:

P P M I v 1 , v 2 = m a x ( l o g ( c o u n t ( v 1 , v 2 ) ⋅ ∣ D ∣ c o u n t ( v 1 ) c o u n t ( v 2 ) ) , 0 ) PPMI_{v_1,v_2} = max(log(\frac{count(v_1,v_2)\cdot |D|}{count(v_1)count(v_2)}),0) PPMIv1,v2=max(log(count(v1)count(v2)count(v1,v2)D),0)
其中

  • ∣ D ∣ = ∑ v 1 , v 2 c o u n t ( v 1 , v 2 ) |D| = \sum_{v_1,v_2}count(v_1,v_2) D=v1,v2count(v1,v2),且 v 1 , v 2 ∈ V v_1,v_2 \in V v1,v2V

堆叠的去噪自编码能够学习数据中潜在的高度非线性规律。与传统的神经自编码器不同,它通过将输入项随机切换到零来增加输入的噪声。当存在缺失值时,学习到的隐式表示更具有鲁棒性。

Structural Deep Network Embedding (SDNE)

结构深度网络嵌入(SDNE)[43](Structural deep network embed-
ding,ACM SIGKDD 2016):SDNE通过堆叠自编码器,同时保留节点的一阶和二阶近似。一阶近似定义为,节点和邻居节点隐含表示之间的距离,一阶近似表示的目标是,尽可能导出邻接节点的表示。具体地,一阶损失函数 L 1 s t L_{1st} L1st定义为:

L 1 s t = ∑ i , j = 1 n A i , j ∥ h i ( k ) − h j ( k ) ∥ 2 L_{1st} = \sum_{i,j=1}^{n}A_{i,j}\|h_i^{(k)}-h_j^{(k)}\|^2 L1st=i,j=1nAi,jhi(k)hj(k)2
二阶近似定义为,节点输入和其重构输入之间的距离,其中节点输入是邻接矩阵中节点对应的行。二阶近似的目标是保留一个节点的邻居信息,具体地,二阶近似的损失函数定义为:

L 2 n d = ∑ i = 1 n ∥ ( x ^ i − x i ) ⊙ b i ∥ 2 L_{2nd} = \sum_{i=1}^n\|(\widehat{x}_i-x_i)\odot b_i\|^2 L2nd=i=1n(x ixi)bi2
向量 b i b_i bi对非零元素的惩罚多余零元素,因为输入是高度稀疏化的。具体地:

b i j = { 1 i f A i , j = 0 β > 0 i f A i , j = 1 b_{ij} = \left\{ \begin{aligned} 1 \quad \quad if \quad A_{i,j}=0\\ \beta \gt0\quad \quad if \quad A_{i,j}=1\\ \end{aligned} \right . bij={1ifAi,j=0β>0ifAi,j=1
总体上,目标函数定义为

L = L 2 n d + α L 1 s t + λ L r e g L = L_{2nd}+\alpha L_{1st}+\lambda L_{reg} L=L2nd+αL1st+λLreg
其中, L r e g L_{reg} Lreg L 2 L_2 L2正则项。

Deep Recursive Network Embedding (DRNE)

深度递归网络嵌入(DRNE)[66](Deep recursive network embedding with regular equivalence,2018) 直接重构节点的隐含状态而不是重构整个图的统计信息。DRNE使用聚合函数作为编码器,损失函数为:

L = ∑ v ∈ V ∥ h v − a g g r e g a t e ( h u y ∣ u ∈ N ( v ) ) ∥ 2 ( 33 ) L = \sum_{v\in V}\|h_v-aggregate(h_uy|u\in N(v))\|^2\quad\quad (33) L=vVhvaggregate(huyuN(v))2(33)
DRNE的创新之处在于选择LSTRM作为聚合函数,其中邻居序列按照节点度排列。

5.2.3 总结

这些方法都学习节点embedding,但是DNGR和SDNE只给定拓扑结构,而GAE、ARGA、NetRA和DRNE不仅给定拓扑结构而且给定节点内容特性。图自编码的一个挑战是邻接矩阵的稀疏性,使解码器的正项数远少于负项数。为了解决这个问题,DNGR重构了一个更紧密的矩阵即PPMI矩阵,SDNE对邻接矩阵的零项进行了惩罚,GAE对邻接矩阵中的项进行了加权,NetRA将图线性化为序列。

5.3 图生成网络(GGN)

图生成网络(GGN)的目标是,在给定一组观察到的图的前提下生成图。很多图生成方法是与特定领域相关的,例如,分子图生成,一些方法是对分子图进行字符串表示建模,叫做SMILES[98], [99],[100],[101],自然语言处理,以给定的句子[102], [103]为条件生成语义图或者知识图。最近,提出了一些统一的生成方法,一些方法将生成过程看作交替生成节点和边[67], [68],其他的方法利用生成对抗训练[69],
[70]。GGN中的方法或者利用GCN作为构建块,或者使用不同的架构。

5.3.1基于GCN的图生成网络
Molecular Generative Adversarial Networks (MolGAN)

分子生成对抗网络(MolGAN)[69](Molgan: An implicit generative model for small molecular graph,2018) MolGAN集成了关系GCN[104](Modeling relational data with graph convolutional networks,2018),增强GAN[105](Improved training of wasserstein gans,NIPS 2017)和强化学习(RL)目标,生成期望属性的图。GAN包含一个生成器和一个判别器,两者相互竞争以提高生成器的准确性。在MolGAN中,生成器尝试生成一个“伪图”包括他的特征矩阵,判别器则要区分伪样本和经验数据。另外,与判别器并行,引入一个奖励网络,根据外部评价器,生成具有一定特性的图。MolGAN框架如图9所示:

Deep Generative Models of Graphs (DGMG)

图的深度生成模型(DGMG)[68](Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning) deep generative models of graphs,” in Proceedings of the International Conference on Machine Learning, 2018) 利用基于空间的图的GCN来获取现有图的隐藏表示。生成节点和边缘的决策过程取决于生成的图的表示形式。简单地说,DGMG递归地为一个生成图生成节点,直到到达一个停止标准。在加入新节点后的每一步,DGMG重复判断是否在加入的点之间加入边,直到决策变为false。如果决策为true,估计新加入的节点到每个现有节点连接的概率分布,并从概率分布中抽取一个节点作为样本。当新的节点和连接加入到现有图中以后,DGMG再一次更新图表示。

5.3.2 GGN的其他变体(Miscellaneous Graph Generative Networks)
GraphRNN

GraphRNN[67] (Graphrnn: A deep generative model for graphs,ICML 2018)利用两级循环神经网络开发深度图生成模型。图级RNN每次向节点序列添加一个新的节点,而边级RNN生成二进制序列,表示新加入的节点与序列中之前生成的节点之间的连接。GraphRNN采用广度优先遍历(BFS)策略,将图线性化成节点序列,便于训练图级RNN。GraphRNN采用多变量伯努利分布或者条件伯努利分布建模二进制序列,训练边级RNN。

NetGAN

NetGAN[70](Netgan: Generating graphs via random walks,ICML 2018) NetGAN将LSTM[7](Long short-term memory,1997)与Wasserstein GAN[106]结合,从一种基于随机游走的方法生成图形。GAN包含生成器和判别器两个模型,生成器从一个LSTM尽最大可能生成似是而非的随机游走,判别器从正确的随机游走中尽可能区分伪随机游走。训练之后,通过对随机游走集合中节点共生矩阵进行归一化,得到一个新的图。

5.3.3 总结

对生成的图进行评估仍然是一个难题。与人工合成图像或者音频不同,他们能够直接被人类专家评估,生成的图的质量很难直观检测。MolGAN和DGMG利用外部知识来评估生成分子图的有效性。GraphRNN和NetGAN通过图统计信息(如节点度)评估生成的图形。DGMG和GraphRNN依次生成节点和边缘,MolGAN和NetGAN同时生成节点和边缘。根据[71](Constrained generation of semanti-
cally valid graphs via regularizing variational autoencoders,NIPS 2018),前一种方法的缺点是当图变大时,对长序列建模是不现实的。后一种方法的挑战是很难控制图的全局属性。最近一种方法[71]采用变分自编码器通过生成邻接矩阵来生成图形,引入惩罚项来解决有效性约束。然而,由于具有 n n n个节点的图的输出空间为 n 2 n^2 n2,这些方法都不能扩展到大型图。

5.4 图时空网络

图时空网络同时捕获时空图的时空依赖性。时空图具有全局图结构,每个节点的输入随时间变化。例如,在交通网络中,将每个传感器作为一个节点,连续记录某条道路的交通速度,其中交通网络的边由传感器对之间的距离决定。图时空网络的目标是预测未来的节点值或标签,或预测时空图标签。最近的研究探索了单独使用GCNs[75](S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for skeleton-based action recognition,” in Proceedings of the AAAI Conference on Artificial Intelligence,2018.),结GCNs与RNN[73](Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,ICLR 2018)或CNN[74](Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting,IJCAI 2018),以及一种为图结构定制的循环架构[76](Structural-rnn: Deep learning on spatio-temporal graphs ,CVPR 2016)。下面将介绍这些方法。

5.4.1 基于GCN的图时空网络
Diffusion Convolutional Recurrent Neural Network(DCRNN)

扩散卷积循环神经网络(DCRNN)[73]DCRNN引入扩散卷积作为图卷积捕获空间依赖性,用结合门控循环单元(GRU)[96]的序列-序列架构[82]捕获时间依赖性。

扩散卷积对具有前向和后向的截断扩散过程进行建模。形式上,扩散卷积定义为:

X : , p ∗ G f ( θ ) = ∑ k = 0 K − 1 ( θ k 1 ( D O − 1 A ) ) k + θ k 2 ( D I − 1 A T ) k ) X : , p X_{:,p*G}f(\theta) = \sum_{k=0}^{K-1}(\theta_{k1}(D_O^{-1}A))^k+\theta_{k2}(D_I^{-1}A^T)^k)X_{:,p} X:,pGf(θ)=k=0K1(θk1(DO1A))k+θk2(DI1AT)k)X:,p
其中 D O D_O DO是出度矩阵, D I D_I DI是入度矩阵。为了实现多输入输出通道,DCRNN提出了一种扩散卷积层,定义是如下

Z : , q = σ ( ∑ p = 1 P X : , p ∗ G f ( Θ q , p , : , : ) ) Z_{:,q} = \sigma(\sum_{p=1}^PX_{:,p*G}f(\Theta_{q,p,:,:}) ) Z:,q=σ(p=1PX:,pGf(Θq,p,:,:))
其中

  • X ∈ R T × N × D , Z ∈ R N × Q , Θ ∈ R Q × P × K × 2 , X \in R^{T\times N\times D},Z\in R^{N\times Q},\Theta\in R^{Q\times P\times K \times 2}, XRT×N×D,ZRN×Q,ΘRQ×P×K×2,
  • Q Q Q是输出通道数量
  • P P P是输入通道数量

为了捕获时间依赖性,DCRNN使用扩散卷积层对GRU的输入进行处理,这样循环单元同时获得上一时刻的历史信息,和图卷积中的邻域信息。DCRNN中改进的GRU叫做扩散卷积门控循环单元(DCGRU):

r ( t ) = s i g m o i d ( Θ r ∗ G [ X ( t ) , H ( t − 1 ) ] + b r ) u ( t ) = s i g m o i d ( Θ u ∗ G [ X ( t ) , H ( t − 1 ) ] + b u ) C ( t ) = s i g m o i d ( Θ C ∗ G [ X ( t ) , ( r ( t ) ⊙ H ( t − 1 ) ) + b r ) H ( t ) ] = u ( t ) o d o t H ( t − 1 ) + ( 1 − u ( t ) ) ⊙ C ( t ) r^{(t)} = sigmoid(\Theta_{r*G}[X^{(t)},H^{(t-1)}]+b_r)\\ u^{(t)} = sigmoid(\Theta_{u*G}[X^{(t)},H^{(t-1)}]+b_u)\\ C^{(t)} = sigmoid(\Theta_{C*G}[X^{(t)},(r^{(t)}\odot H^{(t-1)})+b_r)\\ H^{(t)}] = u^{(t)}odot H^{(t-1)}+(1-u^{(t)})\odot C^{(t)} r(t)=sigmoid(ΘrG[X(t),H(t1)]+br)u(t)=sigmoid(ΘuG[X(t),H(t1)]+bu)C(t)=sigmoid(ΘCG[X(t),(r(t)H(t1))+br)H(t)]=u(t)odotH(t1)+(1u(t))C(t)

CNN-GCN

CNN-GCN[74](Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting,IJCAI 2018) 1D-CNN与GCN[14](Semi-supervised classification with
graph convolutional networks,2017)交织学习时空数据。对于一个输入张量 X ∈ R T × N × D X\in R^{T\times N \times D} XRT×N×D,1D-CNN层沿时间轴滑过 X [ : , i , : ] X_{[:,i,:]} X[:,i,:]聚合每个节点的时间信息,同时GCN层在每个时间步作用于 X [ i , : , : ] X_{[i,:,:]} X[i,:,:]聚合空间信息。输出层是线性转换,生成每个节点的预测。CNN-GCN框架在图5c中展示。

Spatial Temporal GCN (ST-GCN)

时空GCN (ST-GCN)[75]ST-GCN将时间流扩展为图边,因此能够使用统一的GCN模型提取时空信息。ST-GCN定义了一个标签函数,根据两个相关节点的距离为图的每条边分配一个标签。这样,邻接矩阵就可以表示为 K K K个邻接矩阵的和,其中 K K K是标签的个数。然后ST-GCN对每个K邻接矩阵使用不同权重的GCN[14](Semi-supervised classification with graph convolutional networks,2017),然后求和。

f o u t = ∑ j Λ j − 1 2 A j Λ j − 1 2 f i n W j f_{out} = \sum_j\Lambda_j^{-\frac{1}{2}}A_j\Lambda_j^{-\frac{1}{2}}f_{in}W_j fout=jΛj21AjΛj21finWj

5.4.2 其他变体
Structural-RNN

Structural-RNN Jain等[76](Structural-rnn: Deep learning on spatio-temporal graphs ,CVPR 2016)提出了一个名为Structural-RNN的循环结构框架,主要目标是在每个时间步骤预测节点标签。Structural-RNN由两种RNN组成,即nodeRNN和edgeRNN。每个节点和边的时间信息分别通过nodeRNN和edgeRNN。由于为不同节点和边假设不同的RNN会显著增加模型复杂度,所以取而代之,将节点和边分割成语义组。例如,一个人-对象交互的图包含两组节点,人节点和对象节点,三组边,人-人边,人-对象边,对象-对象边。统一语义组的节点或者边共享相同的RNN。将edgeRNN的输出作为nodeRNN的输入,以合并空间信息。

5.4.3 总结

DCRNN由于利用了循环网络架构能够处理长时间依赖关系。虽然CNN-GCN比DCRNN简单,但是由于他首先实现了1D-CNN,所以在处理时空图上更加高效。ST-GCN将时间流作为图的边,使邻接矩阵的大小呈二次增长。一方面,增加了图卷积层的计算成本。另一方面,为了捕获长期依赖关系,图卷积层必须多次叠加。Structural-RNN通过在相同的语义组共享相同的RNN提高了模型的有效性。但是,需要人类先验知识来划分语义组。

6 应用

GNN有广泛的应用。首先总结了文献中频繁使用的基准数据集,然后总结了四个常用数据集上的基准性能以及GNN的开源实现,最后,总结了GNN在各个领域的实际应用。

6.1 基准数据集

作者总结了该文章涉及的文献中每个数据集使用的频率,并在表5中展示了至少出现两次的数据集。

分类数据集来源#图#节点#边#特征#标签引文
引文网络Cora[107]12708542914337[14], [15], [24], [26], [28] [47], [48], [49], [52], [57] [61], [62], [63], [64], [108] [109], [110]
Citeseer[107]13327473237036[14], [15], [28], [49], [52] [57], [61], [62], [63], [64] [109], [110]
Pubmed[107]119717443385003[14], [15], [26], [28], [47] [48], [51], [52], [54], [57] [62], [64], [70], [109], [110]
DBLPdblp.uni-trier.de [111](aminer.org/citation)1[65], [70], [108], [112]
社交网络BlogCatalog[113]11031233398339[43], [51], [65], [114]
Reddit[25]12329651160691960241[25], [29], [48], [49], [57] [109]
Epinionswww.epinions.com1[53], [112]
生物化学图PPI[115]245694481871650121[15], [20], [25], [28], [29] [49], [51], [65], [109]
NCI-1[116]4100372[27], [47], [50], [55], [58] [60], [90], [92], [93]
NCI-109[116]4127382[27], [47], [55], [93]
MUTAG[117]18872[27], [47], [55], [58], [90] [92]
D&D[118]11782[27], [50], [55], [58], [59] [90], [93]
QM9[119]13388513[13], [69]
tox21tripod.nih.gov/tox21/challenge/1270712[23], [56]
无结构图MNISTyann.lecun.com/exdb/mnist/7000010[12], [21], [24], [26], [55]
Wikipediawww.mattmahoney.net/dc/textdata1477718481240[65], [114]
20NEWS[120]11884620[12], [42]
其他METR-LA[121][29], [73]
Movie-Lens1M[122]grouplens.org/datasets/1100001 Millinoi[24], [114]
Nell[123]16575526614461278210[14], [49], [52]

引文网络
包括文章,作者及其关系,关系可以是引文,作者,共同作者。尽管引文网络是有向图,但是在评估关于节点分类,链接预测和节点聚类任务的模型性能时,通常被视为无向图。引文网络有三个流行的数据集,Cora,Citeseer和Pubmed。Cora包含2708个机器学习出版物,分为7个类。Citeseer包含3327篇科学论文,分为6个类。Cora,Citeseer中的每一篇论文都由独热向量表示,独热向量表示字典中的单词是否被引用。Pubmed包含19717个与糖尿病相关的出版物,每一篇文章由逆文本频率表示(IF-IDF)。此外,DBLP是一个有数百万篇文章和作者的引文数据集,这些文章和作者都是从计算机科学书目中收集而来。可以在https://dblp.uni-trier.de上找到DBLP的原始数据集。 DBLP引文网络的处理版本由https://aminer.org/citation持续更新。

社交网络
数据根据在线服务如BlogCatalog,Reddit和Epinions等中的用户交互形成。BlogCatalog是一个由博主和他们的社会关系形成的社交网络。博主的标签代表了他们的个人兴趣。Reddit数据集是由Reddit论坛收集的帖子形成的无向图。如果两个如果包含同一个用户的评论,这两个帖子就会形成链接。每个帖子含有一个表示其所属社区的标签。Epinions数据集是从在线产品评论网站收集的多关系图,其中评论者可以具有多种关系类型,例如信任,不信任,共同审查和共同评级。

化学/生物图
化学分子和化合物可以用化学图表示,原子作为节点,化学键作为边缘。此类图通常用于评估图分类性能。 NCI-1和NCI-9数据集分别含有4100和4127种化合物,标记它们是否具有阻碍人癌细胞生长的活性。 MUTAG数据集包含188种硝基化合物,标记为是芳香族还是杂芳香族。 D&D数据集包含1178个蛋白质结构,标记它们是酶还是非酶。 QM9数据集包含133885个分子,标签是13种化学特性。 Tox21数据集包含12707种化合物,分为12种毒性。另一个重要的数据集是蛋白质 - 蛋白质相互作用网络(PPI)。它包含24个生物图,其中节点表示蛋白质,边缘表示蛋白质之间的相互作用。在PPI中,图与人体组织关联,节点标签表示生物状态。

非结构化图
为了测试GNN对非结构化数据的泛化能力,k最近邻图(kNN图)已被广泛使用。 MNIST数据集包含70000张尺寸为28×28的图像,并有十类数字。将MNIST图像转换为图的典型方法是,基于其像素位置构造8-NN图形。Wikipedia数据集是从维基百科转储的前一百万字节中提取的单词共生网络。单词标签代表词性(POS)标签。 20-NewsGroup数据集包含大约20,000个新闻组(NG)文本文档,有20种新闻类型。通过将每个文档表示为节点,并使用节点之间的相似性作为边缘权重来构造20-NewsGroup的图。

其他
还有其他几个值得一提的数据集。 METR-LA是从洛杉矶高速公路收集的交通数据集。来自MovieLens网站的MovieLens-1M数据集,包含由6k用户提供的100万项目评级。它是推荐系统的基准数据集。 NELL数据集是从Never-Ending Language Learning项目获得的知识图。它由涉及两个实体及其关系的三元组组成。

6.2 开源项目(Benchmarks & Open-source Implementations)

在表5中列出的数据集中,Cora,Pubmed,Citeseer和PPI是最常用的数据集。在测试GCN在节点分类任务上的性能的时候,经常在这些数据集上比较。表6展示了这四个数据集的基准性能,其中所有的数据集使用标准数据分割。开源实现有助于深度学习研究中的基线实验。如果没有公开源代码,由于存在大量超参数,就会很难达到文献中提到的结果。表7展示4-5节种涉及的GNN模型的开源实现。值得注意的是,Fey等人 [89]在PyTorch发布了一个名为PyTorch Geometric 3的几何学习库,它实现了几个图形神经网络,包括ChebNet [12],1stChebNet [14],GraphSage [25],MPNNs [13](Neural message passing for quantum chemistry,ICML 2017),GAT [15]和SplineCNN [89]。最近发布的深度图库(DGL)4提高了许多GNN的快速实现,通过在流行深度学习平台上,如PyTorch和MXNet等,提供一系列函数实现。

表6 对四个最常用数据集的性能进行基准测试

方法CoraCiteseerPubmedPPI
1stChebnet (2016) [14]81.570.379.0-
GraphSage (2017) [25]---61.2
GAT (2017) [15]83.0± 0.772.5±0.779.0±0.397.3±0.2
Cayleynets (2017) [24]81.9±0.7---
StoGCN (2018) [49]82.0±0.870.9±0.278.7±0.497.8±0.05
DualGCN (2018) [52]83.572.680.0-
GAAN (2018) [29]---98.71±0.02
GraphInfoMax (2018) [109]82.3± 0.671.8±0.776.8±0.663.8±0.2
GeniePath (2018) [51]--78.597.9
LGCN (2018) [28]83.3±0.573.0±0.679.5± 0.277.2±0.2
SSE (2018) [20]]---83.6

表7 开源实现

模型框架GitHub链接
ChebNet (2016) [12]tensorflowhttps://github.com/mdeff/cnn_graph
1stChebNet (2017) [14]tensorflowhttps://github.com/tkipf/gcn
GGNNs (2015) [19]luahttps://github.com/yujiali/ggnn
SSE (2018) [20]Chttps://github.com/Hanjun-Dai/steady_state_embedding
GraphSage (2017) [25]tensorflowhttps://github.com/williamleif/GraphSAGE
LGCN (2018) [28]tensorflowhttps://github.com/divelab/lgcn/
SplineCNN (2018) [89]pytorchhttps://github.com/rusty1s/pytorch_geometric
GAT (2017) [15]tensorflowhttps://github.com/PetarV-/GAT
GAE (2016) [62]tensorflowhttps://github.com/limaosen0/Variational-Graph-Auto-Encoders
ARGA (2018) [64]tensorflowhttps://github.com/Ruiqi-Hu/ARGA
DNGR (2016) [42]matlabhttps://github.com/ShelsonCao/DNGR
SDNE (2016) [43]pythonhttps://github.com/suanrong/SDNE
DRNE (2016) [66]tensorflowhttps://github.com/tadpole/DRNE
GraphRNN (2018) [67]tensorflowhttps://github.com/snap-stanford/GraphRNN
DCRNN (2018) [73]tensorflowhttps://github.com/liyaguang/DCRNN
CNN-GCN (2017) [74]tensorflowhttps://github.com/VeritasYin/STGCN_IJCAI-18
ST-GC(2018)[75]pytorchhttps://github.com/yysijie/st-gcn
Structural RNN (2016) [76]theanohttps://github.com/asheshjain399/RNNexp

6.3 实际应用

GNN在不同的任务和领域中有广泛的应用。尽管每类GNN针对一些通用任务都是具体化的,包括节点分类,节点表示学习,图分类,图生成和时空预测,GNN仍然可以应用于节点聚类,链接预测[124]和图分区[125]。本节主要根据它们所属的一般领域介绍实际应用。

6.3.1计算机视觉

GNN的最大应用领域之一是计算机视觉。研究人员在场景图生成,点云分类和分割,动作识别以及许多其他方向中利用图结构来实现进行了探索。

在场景图生成中,目标之间的语义关系有助于理解视觉场景背后的语义。给定图像,场景图生成模型检测和识别目标并预测目标对之间的语义关系[126],[127],[128]。另一个应用是在给定场景图的情况下生成逼真的图像[129],与上述过程相反。由于自然语言可以被解析为语义图,其中每个单词代表一个对象,因此在给定文本描述的情况下合成图像是一种很有前途。

在点云分类和分割中,点云是由LiDAR扫描记录的一组3D点。该任务的解决方案使LiDAR设备能够看到周围环境,通常对无人驾驶有益。为了识别由点云描绘的物体,[130],[131],[132],将点云转换为k-最近邻图或超点图,并使用GCN来探索拓扑结构。

在动作识别中,识别视频中包含的人体动作有助于从机器方面更好地理解视频内容。一种解决方案是检测视频剪辑中人体关节的位置。由骨架链接的人体关节自然形成图,给定人类关节位置的时间序列,[75],[76]应用时空神经网络来学习人类行为模式。

此外,在计算机视觉中应用GNN的可能方向的数量仍在增长。包括人-物交互[133],小样本图像分类[134],[135],语义分割[136],[137],视觉推理[138]和问答QA系统[139]。

6.3.2推荐系统

基于图的推荐系统将条目和用户作为节点。通过利用条目和条目,用户和用户,用户和条目以及内容信息之间的关系,基于图形的推荐系统能够提供高质量的推荐。推荐系统的关键是将条目的重要性评分给用户,可以被转换为链接预测问题,目标是预测用户和条目之间缺失的链接。为了解决这个问题,范等人 [9]和Ying等人 [11]提出一个基于GCN的图自编码器。 Monti等人 [10]结合GCN和RNN来学习产生已知评级的基础过程。

6.3.3交通

交通拥堵已成为现代城市的热门社会问题。准确预测交通网络中的交通速度,交通量或道路密度对于路线规划和流量控制至关重要。 [29],[73],[74],[140]采用的是与时空神经网络结合的图方法。模型输入是时空图,节点表示放置在道路上的传感器,边缘表示成对节点的距离高于阈值,并且每个节点包含时间序列作为特征。目标是在一个时间间隔内预测道路的平均速度。另一个有趣的应用是出租车需求预测,能够帮助智能交通系统有效利用资源,有效节约能源。根据历史出租车需求,位置信息,天气数据和事件特征,Yao等人[141]结合LSTM,CNN和由LINE [142]训练的节点embedding,形成每个位置的联合表示,以预测在一个时间间隔内该位置所需的出租车数量。

6.3.4生物化学

在化学领域,研究人员应用GNN来研究分子的图形结构。在分子图中,节点表示原子,边表示化学键。节点分类,图分类和图生成是分子图的三个主要任务,能够学习分子指纹[56],[83],预测分子特性[13],推断蛋白质界面[143],并合成化学品化合物[68],[69],[144]。

6.3.5其他

初步探索将GNN应用于其他问题,如程序验证[19],程序推理[145],社会影响预测[146],对抗性攻击预防[147],电子健康记录建模[148],[ 149],大脑网络[150],事件检测[151]和组合优化[152]。

7 未来发展方向

尽管已经证明了GNN在学习图数据方面的能力,但由于图的复杂性,仍然存在挑战。在本节中,提供了图神经网络的四个未来方向。

7.1 Go Deep

深度学习的成功在于深层神经架构。例如,在图像分类中,杰出的ResNet [153]的具有152个层。然而,当谈到图时,实验研究表明,随着层数的增加,模型性能急剧下降[110]。根据[110],这是由于图卷积推动了相邻节点的表示更接近,因此理论上,无限次卷积,所有节点的表示将收敛到单个点。这就涉及一个问题,在学习图结构数据的时候,更深的网络是否是一个好的策略。

7.2 Receptive Filed

节点的感受野是指包括中心节点及其邻居的一组节点。节点的邻居数量遵循幂律分布。一些节点可能只有一个邻居,而其他节点可能有多达几千个邻居。虽然[25],[27],[28]采用了采样策略,但如何选择节点的代表性感受野仍有待探索。

7.3 Scalability

大多数GNN不能很好地适应大型图。其主要原因是当堆叠多个GCN时,节点的最终状态涉及其大量邻居的隐藏状态,导致反向传播的高复杂性。虽然有几种方法试图通过快速采样[48],[49]和子图训练[25],[28]来提高模型效率,但它们仍然不具有足够的可扩展性来处理具有大图的深层架构。

7.4 Dynamics and Heterogeneity

大多数当前的图神经网络都采用静态齐次图来处理。一方面,假设图结构是固定的。另一方面,假设图中的节点和边缘来自单个源。然而,在许多情况下,这两个假设是不现实的。在社交网络中,新人可以在任何时间进入网络,并且现有人也可以退出网络。在推荐系统中,产品可以具有不同的类型,其输入可以具有不同的形式,例如文本或图像。因此,应该开发新的方法来处理动态和异构图结构。

8 总括

在本次研究中,论文对GNN进行了全面的概述。 文中提供了一种分类法,将图神经网络分为五类:图卷积网络,图注意力网络,图自编码器,图生成网络和图时空网络。 并且对类内或类之间的方法进行全面的回顾、比较和总结。 然后介绍了图神经网络的广泛应用,图神经网络的数据集,开源代码和baseline。 最后,提出了图形神经网络的四个未来方向。

9 相关论文

谱图GCN相关论文

  • 2014:Spectral networks and locally connected networks on graphs是由LeCun参与的第一篇基于谱图理论设计的图卷积
  • 2015:Deep convolutional networks on graph-structured data
  • 2016:Convolutional neural networks on graphs with fast localized spectral filtering
  • 2017:Semi-supervised classification with graph convolutional networks
  • 2017:Cayleynets:Graph convolutional neural networks with complex rational spectral filters
  • 2018:Adaptive graph convolutional neural networks

空间域GCN先关论文

  • 2016:Learning convolutional neural networks for graphs
  • 2017:Inductive representation learning on large graphs
  • 2017:Geometric deep learning on graphs and manifolds using mixture model cnns
  • 2018:Large-scale learnable graph convolutional networks

四篇图网络综述

  • A Comprehensive survey on Graph Neural Networks
  • Deep Learning on Graphs: A Survey
  • Graph Neural Networks: A Review of Methods and Applications
  • Relational inductive biases, deep learning, and graph networks
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值