动态规划算法常见题型

动态规划算法常见题型

一、基本概念

动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

二、基本思想与策略

基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。
由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。
与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。
以上都过于理论,还是看看常见的动态规划问题吧!!!

三、常见动态规划问题
1.硬币找零问题
详见http://blog.csdn.net/yyl424525/article/details/55192771

2.求两字符序列的最长公共字符子序列
问题描述:

字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列i0,i1,…,ik-1,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。
考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:
(1)
如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;
(2)
如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;
(3)
如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。
这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。

求解:

引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS
的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。
我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i]
= Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

问题的递归式写成:
这里写图片描述

回溯输出最长公共子序列过程:
这里写图片描述
算法分析:

由于每次调用至少向上或向左(或向上向左同时)移动一步,故最多调用(m + n)次就会遇到i = 0或j =
0的情况,此时开始返回。返回时与递归调用时方向相反,步数相同,故算法时间复杂度为Θ(m + n)。

代码:

#include <stdio.h>
#include <string.h>
#define MAXLEN 100

void LCSLength(char *x, char *y, int m, int n, int c[][MAXLEN], int b[][MAXLEN])
{
    int i, j;

    for(i = 0; i <= m; i++)
        c[i][0] = 0;
    for(j = 1; j <= n; j++)
        c[0][j] = 0;
    for(i = 1; i<= m; i++)
    {
        for(j = 1; j <= n; j++)
        {
            if(x[i-1] == y[j-1])
            {
                c[i][j] = c[i-1][j-1] + 1;
                b[i][j] = 0;
            }
            else if(c[i-1][j] >= c[i][j-1])
            {
                c[i][j] = c[i-1][j];
                b[i][j] = 1;
            }
            else
            {
                c[i][j] = c[i][j-1];
                b[i][j] = -1;
            }
        }
    }
}

void PrintLCS(int b[][MAXLEN], char *x, int i, int j)
{
    if(i == 0 || j == 0)
        return;
    if(b[i][j] == 0)
    {
        PrintLCS(b, x, i-1, j-1);
        printf("%c ", x[i-1]);
    }
    else if(b[i][j] == 1)
        PrintLCS(b, x, i-1, j);
    else
        PrintLCS(b, x, i, j-1);
}

int main(int argc, char **argv)
{
    char x[MAXLEN] = {"ABCBDAB"};
    char y[MAXLEN] = {"BDCABA"};
    int b[MAXLEN][MAXLEN];
    int c[MAXLEN][MAXLEN];
    int m, n;

    m = strlen(x);
    n = strlen(y);

    LCSLength(x, y, m, n, c, b);
    PrintLCS(b, x, m, n);

    return 0;
}

Java版

import java.util.Scanner;
//最长公共子序列
//c[i][j]记录x[i]与y[j]的LCS的长度,b[i][j]记录c[i][j]是通过哪个子问题的解得到的,以决定搜索方向
public class Lcs {
    static int b[][],c[][];
    static int m,n;
    static String xString,yString;
    public static void main(String [] args){
     Scanner scanner=new Scanner(System.in);
      xString=scanner.nextLine();
      yString=scanner.nextLine();
     m=xString.length();
     n=yString.length();
     b=new int[m+1][n+1];
     c=new int[m+1][n+1];

     getLcs();
     printLcs(m,n);
    }

    private static void printLcs(int m,int  n) {
                if(m==0||n==0)
                    return ;
                if(b[m][n]==1)
                {
                    printLcs(m-1, n-1);
                    System.out.print(xString.charAt(m-1));
                }
                else if(b[m][n]==2)
                {
                    printLcs(m, n-1);
                }else if(b[m][n]==3)
                {
                    printLcs(m-1, n);
                }
    }

    private static void getLcs() {

        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(xString.charAt(i-1)==yString.charAt(j-1))
                {
                    c[i][j]=c[i-1][j-1]+1;
                    b[i][j]=1;
                }else if(c[i][j-1]>=c[i-1][j])
                {
                    c[i][j]=c[i][j-1];
                    b[i][j]=2;
                }else {
                    c[i][j]=c[i-1][j];
                    b[i][j]=3;
                }
            }
        }

    }
}

3.走台阶问题
有n级台阶,一个人每次上一级或者两级,问有多少种走完n级台阶的方法。为了防止溢出,请将结果Mod 1000000007
给定一个正整数int n,请返回一个数,代表上楼的方式数。保证n小于等于100000。
测试样例:
1
返回:1
解析: 设DP[i]为走到第i层一共有多少种方法,那么DP[80]即为所求。很显然DP[1]=1, DP[2]=2(走到第一层只有一种方法:就是走一层楼梯;走到第二层有两种方法:走两次一层楼梯或者走一次两层楼梯)。同理,走到第i层楼梯,可以从i-1层走一层,或者从i-2走两层。很容易得到:
// 递推公式:DP[i]=DP[i-1]+DP[i-2]
// 边界条件:DP[1]=1 DP[2]=2


public class ClimbStairs {
    public static void main(String[] args) {
        Scanner scanner=new Scanner(System.in);
        int n=scanner.nextInt();
        System.out.println(climbStair(n));
        System.out.println(climbStair2(n));
    }
//自顶向下一般采用递归
    private static int climbStair(int n) {
        if(n==1)
            return 1;
        if(n==2)
            return 2;
        else return climbStair(n-1)+climbStair(n-2);
    }
    //自顶向上一般采用数组填表方式
    private static int climbStair2(int n)
    {
        int []temp=new int[n+1];
        temp[1]=1;
        temp[2]=2;
        for (int i = 3; i <=n ; i++) {
            temp[i]=temp[i-1]+temp[i-2];
        }
        return temp[n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值