深度优先搜索-地宫取宝

问题描述
  X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。

  地宫的入口在左上角,出口在右下角。

  小明被带到地宫的入口,国王要求他只能向右或向下行走。

  走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。

  当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。

  请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
  输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)

  接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
  要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14

分析详见代码注释
代码:

import java.util.Scanner;
public class PalaceTreasure  {
    static int MOD = 1000000007;
    static int M = 55;

    static int[][][][] dp = new int[M][M][15][15];
    //四维数组就是将每一个状态值都先初始化,然后在后面如果改变了,如果下一次有用到这个状态,那么直接用就好了。
    //dp数组中记录的是状态:xy代表坐标 拥有宝物数量 拥有宝物的最大值(这4个可以详尽唯一的描述没一种可能)
    //如dp[3][4][5][6]=7 即当在map[3][4]且身上有5件宝物 宝物的最大值是6 到达终点有7种路径
    static int n, m, k;
    static int[][] map = new int[M][M];

    // max表示当前最大值
    static int dfs(int x, int y, int num, int max) {
        if (dp[x][y][num][max + 1] != -1) {
          //因为宝物的价值有可能为0,所以定义max时用最小值-1 。但这就导致无法作为下标使用,
            // 所以我们用max+1代表下标。实际上如果测试数据中宝物价值不可能为0,
            // 这时将所有的max+1中的1去掉也是可以的。
            return dp[x][y][num][max + 1];
        }
        int t = 0;// 初始化
        if (x == n - 1 && y == m - 1) { // 到了右下角
            if (map[x][y] > max) {
                if (num == k || num == k - 1)
                    ++t; // 可以拿也可以不拿
            } else if (num == k)
                ++t; // 表示不拿
            return dp[x][y][num][max + 1] = t; // 因为初始参数是-1,所以要加1
        }
        if (x + 1 < n) { // 向下
            if (map[x][y] > max) {
                t += dfs(x + 1, y, num + 1, map[x][y]);
                t %= MOD;
            }
            t += dfs(x + 1, y, num, max);
            t %= MOD;
        }
        if (y + 1 < m) { // 向右
            if (map[x][y] > max) {
                t += dfs(x, y + 1, num + 1, map[x][y]);
                t %= MOD;
            }
            t += dfs(x, y + 1, num, max);
            t %= MOD;
        }
        return dp[x][y][num][max + 1] = t; // 记忆化
    }

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        n = in.nextInt();
        m = in.nextInt();
        k = in.nextInt();
        for (int i = 0; i < n; ++i)
            for (int j = 0; j < m; ++j)
                map[i][j] = in.nextInt();
        // 初始化
        for (int i = 0; i < dp.length; i++) {
            for (int j = 0; j < dp[i].length; j++) {
                for (int x = 0; x < dp[i][j].length; x++) {
                    for (int y = 0; y < dp[i][j][x].length; y++) {
                        dp[i][j][x][y] = -1;
                    }
                }
            }
        }
        System.out.println(dfs(0, 0, 0, -1));//此处定义max为-1
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值