动态规划-多边形游戏问题

1.描述:有一个由n个顶点构成的多边形。每个顶点被赋予一个整数值,每条边被赋予一个运算符“+”或“*”。所有边依次用整数从1到n编号。
这里写图片描述

游戏第1步,将一条边删除。
随后n-1步按以下方式操作:
(1)选择一条边E以及由E连接着的2个顶点V1和V2;
(2)用一个新的顶点取代边E以及由E连接着的2个顶点V1和V2。将由顶点V1和V2的整数值通过边E上的运算得到的结果赋予新顶点。
最后,所有边都被删除,游戏结束。游戏的得分就是所剩顶点上的整数值。

输入:
输入共两行,第一行一个整数n表示顶点个数,第二行共2*n个数,分别为数字和字符。

例如:对于上图中的问题,我们可以这样按输入样例中的例子输入,数学中的“+”号代表加法,小写字母“x”代表乘法。

输出:
一个整数,计算最高得分。

输入样例:
5
10 + -1 x -2 x 3 + -8 x

输出样例:
486

2.问题分析
解决该问题可用动态规划中的最优子结构性质来解。
设所给的多边形的顶点和边的顺时针序列为op[1],v[1],op[2],v[2],op[3],…,op[n],v[n] 其中,op[i]表示第i条边所对应的运算符,v[i]表示第i个顶点上的数值,i=1~n。
在所给的多边形中,从顶点i(1<=i<=n)开始,长度为j(链中有j个顶点)的顺时针链p(i,j)可表示为v[i],op[i+1],…,v[i+j-1]。

设m1是对子链p[i][s]的任意一种合并方式得到的值,而a和b分别是在所有可能的合并中得到的最小值和最大值。m2是p[i+s][j-s]的任意一种合并方式得到的值,而c和d分别是在所有可能的合并中得到的最小值和最大值。依此定义有a≤m1≤b,c≤m2≤d
  (1)当op[i+s]=’+’时,显然有a+c≤m≤b+d

  (2)当op[i+s]=’*’时,有min{ac,ad,bc,bd}≤m≤max{ac,ad,bc,bd}
  
换句话说,主链的最大值和最小值可由子链的最大值和最小值得到。例如,当m=ac时,最大主链由它的两条最小主链组成;同理当m=bd时,最大主链由它的两条最大子链组成。无论哪种情形发生,由主链的最优性均可推出子链的最优性。
综上可知多边形游戏问题满足最优子结构的性质。

3.递归求解

由前面的分析可知,为了求链合并的最大值,必须同时求子链合并的最大值和最小值。因此,在整个计算过程中,应同时计算最大值和最小值。

设m[i,j,0]是链p(i,j)合并的最小值,而m[i,j,1]是最大值。若最优合并在op[i+s]处将p(i,j)分为两个长度小于j的子链p(i,i+s)和p(i+s,j-s),且从顶点i开始的长度小于j的子链的最大值和最小值均已经计算处。为了叙述方便,记

                     a=m[i,i+s,0]

                     b=m[i,i+s,1]

                     c=m[i+s,j-s,0]

                     d=m[i+s,j-s,1]

     (1)当op[i+s]='+'时,

                    m[i,j,0]=a+c

                   m[i,j,1]=b+d

     (2)当op[i+s]='*'是,

                    m[i,j,0]=min{ac,ad,bc,bd}

                    m[i,j,1]=max{ac,ad,bc,bd}

综合(1)和(2),将p(i,j)在op[i+s]处断开的最大值记为maxf(i,j,s),最小值记为minf(i,j,s),则

                                           a+c                               op[i+s]='+'

                    minf(i,j,s)={                                         

                                           min{ac,ad,bc,bd}           op[i+s]='*'

                                            b+d                                op[i+s]='+'     

                   maxf(i,j,s)={                                               

                                            max{ac,ad,bc,bd}          op[i+s]='*'

     由于多边最优断开位置s有1≤s≤j-1的j-1种情况,由此可知

                        m[i,j,0]=min{minf(i,j,s)}                  1≤i,j≤n  

                         m[i,j,1]=max{maxf(i,j,s)}                  1≤i,j≤n   

     初始边界显然为

                          m[i,j,0]=v[i]                  1≤i≤n

                           m[i,j,1]=v[i]                  1≤ i≤n

由于多边形是封闭的,在上面的计算中,当i+s>n是,顶点i+s实际编号为(i+s)mod n。按上述递推式计算出的m[i,n,1]即为首次删去第i条边后得到的最大得分。

4.算法描述

基于以上讨论可设计解多边形游戏问题的动态规划算法如下:

       void minMax(int i,int s,int j)
       {          int e[5];

       int a=m[i][s][0],

           b=m[i][s][1],

           r=(i+s-1)%n+1,//妙!

           c=m[r][j-s][0],

           d=m[r][j-s][1];

       if(op[r]=='t')

         {minf=a+c;

          maxf=b+d;

         }

       else

       {

           e[1]=a*c;

           e[2]=a*d;

           e[3]=b*c;

           e[4]=b*d;

           minf=e[1];

           maxf=e[1];

           for(int k=2;k<5 kh>

             {if(minf>e[k]) minf=e[k];

              if(maxf

             }

       }

}

int polyMax(){
for(int j=2;j<=n;j++)

  for(int i=1;i<=n;i++)

    for(int s=1;s

      {minMax(i,s,j);

       m[i][j][0]=100000;

       m[i][j][1]=-100000;

       if(m[i][j][0]>minf) m[i][j][0]=minf;

       if(m[i][j][1]

      }

long int temp=m[1][n][1];

for(int i=2;i<=n;i++)

  if(temp

return temp;

}

【新方法】

本题在处理顺时针循环时的下标时,有一个很妙的方法。即,

                        r=(i+s-1)%n+1

其实,本题从这样编纯属巧合。

当i+s 并不需要减一的时候,用这种方法编就很方便。

如果用传统的方法就是

            if(i==n)       r=n;

             else r=i%n

这样,以来r=(i+s-1)%n+1就简单了不少。

【参考程序】



#include

#include

long int minf,maxf,m[51][51][2];

char op[52];

int v[51],n;

void in()

{

     FILE *in=fopen("polygon2.in","r");

     fscanf(in,"%d",&n);

     fgetc(in);

     for(int i=1;i<=n;i++)

       fscanf(in,"%c %d ",&op[i],&v[i]);

     fclose(in);

}    

void iniM()

{

     for(int i=1;i<=n;i++)

       {m[i][1][0]=v[i];

        m[i][1][1]=v[i];

       }

}

void minMax(int i,int s,int j)

{

           int e[5];

           int a=m[i][s][0],

               b=m[i][s][1],

               r=(i+s-1)%n+1,//妙!

               c=m[r][j-s][0],

               d=m[r][j-s][1];

           if(op[r]=='t')

             {minf=a+c;

              maxf=b+d;

             }

           else

           {

               e[1]=a*c;

               e[2]=a*d;

               e[3]=b*c;

               e[4]=b*d;

               minf=e[1];

               maxf=e[1];

               for(int k=2;k<5 kh>

                 {if(minf>e[k]) minf=e[k];

                  if(maxf

                 }

           }

}                                     

int polyMax()

{

    for(int j=2;j<=n;j++)

      for(int i=1;i<=n;i++)

        for(int s=1;s

          {minMax(i,s,j);

           m[i][j][0]=100000;

           m[i][j][1]=-100000;

           if(m[i][j][0]>minf) m[i][j][0]=minf;

           if(m[i][j][1]

          }

    long int temp=m[1][n][1];

    for(int i=2;i<=n;i++)

      if(temp

    return temp;

}

int main()

{

    in();

    iniM();

    long int max=polyMax();

    printf("%ld\n",max);

    system("pause");

    return 0;

}  
  • 5
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值