3.2 RDD依赖与有向无环图DAG

一、 DAG定义
有向无环图(DAG):Directed Acycle graph,反应RDD之间的依赖关系;
DAG每个节点代表啥?代表的一个RDD


transformation:
1) 一个RDD生成两个RDD:
RDD2 = RDD1.filter(xxxxx)
RDD3 = RDD1.filter(yyyy)
是从RDD1到RDD2,RDD3这样的过程
2) Union是两个RDD合并成一个的过程
则是RDD2 RDD3变成RDD4的过程
3) filter/map/reduceByKey 应该都是一条直线
是从RDD4到RDD5这样的过程

atcion:
RDD5.collect();
RDD5.foreach();
这种则会生成两个job,会顺序提交,前一个job执行结束之后才会提交下一个job(假设上述代码都在一个线程中)

(二)、RDD依赖关系
RDD依赖关系,也就是有依赖的RDD之间的关系,比如RDD1——->RDD2(RDD1生成RDD2),RDD2依赖于RDD1。这里的生成也就是RDDtransformation操作

2.1 窄依赖(也叫narrow依赖)–一对一、多对一
从父RDD角度看:一个父RDD只被一个子RDD分区使用。父RDD的每个分区最多只能被一个Child RDD的一个分区使用
从子RDD角度看:依赖上级RDD的部分分区 。 精确知道依赖的上级RDD分区,会选择和自己在同一节点的上级RDD分区,没有网络IO开销,高效。如map,flatmap,filter

2.2宽依赖(也叫shuffle依赖/wide依赖)—–多对多
从父RDD角度看:一个父RDD被多个子RDD分区使用。父RDD的每个分区可以被多个Child RDD分区依赖
从子RDD角度看:依赖上级RDD的所有分区 。 无法精确定位依赖的上级RDD分区,相当于依赖所有分区(例如reduceByKey) 计算就涉及到节点间网络传输
这里写图片描述

特别说明:对于join操作有两种情况,如果join操作使用的每个partition仅仅和已知的Partition进行join,此时的join操作就是窄依赖;其他情况的join操作就是宽依赖;因为是确定的Partition数量的依赖关系,所以就是窄依赖
得出一个推论,窄依赖不仅包含一对一的窄依赖,还包含一对固定个数的窄依赖(也就是说对父RDD的依赖的Partition的数量不会随着RDD数据规模的改变而改变)

2.3 Spark之所以将依赖分为narrow和 shuffle:
(1) narrow dependencies可以支持在一个结点上管道化执行。例如基于一对一的关系,可以在 filter 之后执行 map,以pipeline管道形式顺序执行多条命令。分区内的计算收敛,不需要依赖所有分区的数据,可以并行地在不同节点进行计算。所以窄依赖支持更高效的故障还原,因为它只需要重新计算丢失的parent partition即可
(2)shuffle dependencies 则需要所有的父分区都是可用的,一个结点的故障可能导致来自所有父 RDD 的分区丢失,因此就需要完全重新执行,必须等RDD的parent partition数据全部ready之后才能开始计算,可能还需要调用类似MapReduce之类的操作进行跨节点传递。从失败恢复的角度看,shuffle dependencies 牵涉RDD各级的多个parent partition。因此对于宽依赖,Spark 会在持有各个父分区的结点上,将中间数据持久化来简化故障还原,就像 MapReduce 会持久化 map 的输出一样。
如图所示,左边的都是右边的父分区

这里写图片描述

(三)、划分stage
由于shuffle依赖必须等RDD的parent RDD partition数据全部ready之后才能开始计算,因此spark的设计是让parent RDD将结果写在本地,完全写完之后,通知后面的RDD。后面的RDD则首先去读之前的本地数据作为input,然后进行运算。
由于上述特性,将shuffle依赖就必须分为两个阶段(stage)去做:
第一个阶段(stage)需要把结果shuffle到本地
例如reduceByKey,首先要聚合某个key的所有记录,才能进行下一步的reduce计算,这个汇聚的过程就是shuffle
第二个阶段(stage)则读入数据进行处理
同一个stage里面的task是可以并发执行的,下一个stage要等前一个stage ready
(和mapreduce的reduce需要等map过程ready 一脉相承)

(为什么要写在本地:后面的RDD多个partition都要去读这个信息,如果放到内存,如果出现数据丢失,后面的所有步骤全部不能进行,违背了之前所说的需要parent RDD partition数据全部ready的原则。为什么要保证parent RDD要ready,如下例,如果有一个partition未生成或者在内存中丢失,那么直接导致计算结果是完全错误的:
这里写图片描述
写到文件中更加可靠。Shuffle会生成大量临时文件,以免错误时重新计算,其使用的本地磁盘目录由spark.local.dir指定,缓存到磁盘的RDD数据。最好将这个属性设定为访问速度快的本地磁盘。可以配置多个路径到多个磁盘,增加IO带宽
在Spark 1.0 以后,SPARK_LOCAL_DIRS(Standalone, Mesos) or LOCAL_DIRS (YARN)参数会覆盖这个配置。比如Spark On YARN的时候,Spark Executor的本地路径依赖于Yarn的配置,而不取决于这个参数。)

对于transformation操作,以shuffle依赖为分隔,分为不同的Stages。
窄依赖——>tasks会归并在同一个stage中,(相同节点上的task运算可以像pipeline一样顺序执行,不同节点并行计算,互不影响)
shuffle依赖——>前后拆分为两个stage,前一个stage写完文件后下一个stage才能开始
action操作——>和其他tasks会归并在同一个stage(在没有shuffle依赖的情况下,生成默认的stage,保证至少一个stage)。

(四)、小实验验证
例一:
在spark-shell里面跑小程序,然后在yarn里面观察
val rdd = sc.parallelize(Array(1,2,3,7)) (因为分的资源是两个核,所以默认设置为两个partition)
rdd.count()
Count是一个action操作。一个action会触发一个job,Count()这个action在整个job没有stage的情况下会生成一个默认的stage
结果:一个job,一个stage,两个task(因为有两个partition)
例二:
这里写图片描述
最终这个生成一个job,因为reducebykey是shuffle依赖,所以这里划分为两个stage
parallelize和map被分在一起,为stage0,map最后进行了ShuffleWrite
reduceByKey和count()被划分到一个stage1里面了,最开始要进行shuffle read
这里写图片描述
Stage0的tasks如下图,两个partitions(两个tasks)都进行了shuffle write。两个task互相独立,并不需要依赖彼此做完或者怎样,所以他们在一个stage里面并发执行
这里写图片描述
Stage1的tasks如下:Stage1是依赖之前的stage0完成shuffle的,reduceByKey开始需要ShuffleRead stage0的计算结果

这里写图片描述
这里写图片描述
如果后面还有其他操作,这些操作是要等上面这个shuffle执行完的
reduceByKey 则在下一阶段,shuffleRead读到数据

所以根据shuffle依赖必须分为多个stage
但一个stage内部,多个task(partition)是独立并发执行的,互不打扰

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值