题目描述
S 城现有两座监狱,一共关押着 N 名罪犯,编号分别为1−N。他们之间的关系自然也极不和谐。很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突。我们用“怨气值”(一个正整数值)来表示某两名罪犯之间的仇恨程度,怨气值越大,则这两名罪犯之间的积怨越多。如果两名怨气值为 c 的罪犯被关押在同一监狱,他们俩之间会发生摩擦,并造成影响力为 c 的冲突事件。
每年年末,警察局会将本年内监狱中的所有冲突事件按影响力从大到小排成一个列表,然后上报到 S 城 Z 市长那里。公务繁忙的 Z 市长只会去看列表中的第一个事件的影响力,如果影响很坏,他就会考虑撤换警察局长。
在详细考察了N 名罪犯间的矛盾关系后,警察局长觉得压力巨大。他准备将罪犯们在两座监狱内重新分配,以求产生的冲突事件影响力都较小,从而保住自己的乌纱帽。假设只要处于同一监狱内的某两个罪犯间有仇恨,那么他们一定会在每年的某个时候发生摩擦。
那么,应如何分配罪犯,才能使 Z 市长看到的那个冲突事件的影响力最小?这个最小值是多少?
输入格式
每行中两个数之间用一个空格隔开。第一行为两个正整数 N,M,分别表示罪犯的数目以及存在仇恨的罪犯对数。接下来的 M 行每行为三个正整数aj,bj,cj,表示 aj 号和 bj 号罪犯之间存在仇恨,其怨气值为 cj。数据保证 1<aj≤bj≤N,0<cj≤109,且每对罪犯组合只出现一次。
输出格式
共 1 行,为 Z 市长看到的那个冲突事件的影响力。如果本年内监狱中未发生任何冲突事件,请输出 0。
很明显,我们要先安排怨气值最大的罪犯到不同的监狱里面,直到遇到一对罪犯它们必须在同一个监狱,那么他们将发生冲突并且造成一定影响力。
那么这道题的难点实际上在于怎么去定义集合本身。对于现在需要处理的一对罪犯 x,y 如果他俩不必须在同一个监狱中,那么有:
- x 应该属于 不能和罪犯 y 在同一个监狱的罪犯 的集合。
- y 应该属于 不能和罪犯 x 在同一个监狱的罪犯 的集合。
例如分别加入数据:1,2 不能在一个监狱内;2,3 不能在一个监狱内;
所以我们可以定义一个数组 a,ai 表示不能和罪犯 i 在同一个监狱的罪犯的集合。如果这个集合现在还是空的,那么 ai=0,否则代表的是这个集合内的一个元素。
所以当处理 x,y 这一对犯人的时候,我们分以下步骤:
- 若 ay=0,则 ay=x。
- 否则将 x 加入到 ay 所在的集合中。
- 若 ax=0,则 ax=y。
- 否则将 y 加入到 ax 所在的集合中。
然后从怨气值最大的那对罪犯依次往下处理,直到遇到一对罪犯他们已经在一个集合中为止。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 20010;
const int maxm = 100010;
struct node {
int x, y, w;
bool operator<(const node &_x) const {
return w > _x.w;
}
}g[maxm];
int a[maxn], fa[maxn];
void init(int n) {
for (int i = 1; i <= n; i++) {
fa[i] = i;
a[i] = 0;
}
}
int get(int x) {
if (fa[x] == x) {
return x;
}
return fa[x] = get(fa[x]);
}
int main() {
int n, m;
scanf("%d%d", &n, &m);
init(n);
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &g[i].x, &g[i].y, &g[i].w);
}
sort(g + 1, g + 1 + m);
for (int i = 1; i <= m; i++) {
int x = g[i].x, y = g[i].y, w = g[i].w;
int fa1 = get(x);
int fa2 = get(y);
if (fa1 == fa2) {
printf("%d\n", w);
return 0;
}
if (a[x] == 0) a[x] = y;
else fa[get(a[x])] = get(y);
if (a[y] == 0) a[y] = x;
else fa[get(a[y])] = get(x);
}
printf("0\n");
return 0;
}