给定一个二分图,其中左半部包含 n1𝑛1 个点(编号 1∼n11∼𝑛1),右半部包含 n2𝑛2 个点(编号 1∼n21∼𝑛2),二分图共包含 m𝑚 条边。
数据保证任意一条边的两个端点都不可能在同一部分中。
请你求出二分图的最大匹配数。
二分图的匹配:给定一个二分图 G𝐺,在 G𝐺 的一个子图 M𝑀 中,M𝑀 的边集 {E}{𝐸} 中的任意两条边都不依附于同一个顶点,则称 M𝑀 是一个匹配。
二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。
输入格式
第一行包含三个整数 n1𝑛1、 n2𝑛2 和 m𝑚。
接下来 m𝑚 行,每行包含两个整数 u𝑢 和 v𝑣,表示左半部点集中的点 u𝑢 和右半部点集中的点 v𝑣 之间存在一条边。
输出格式
输出一个整数,表示二分图的最大匹配数。
数据范围
1≤n1,n2≤5001≤𝑛1,𝑛2≤500,
1≤u≤n11≤𝑢≤𝑛1,
1≤v≤n21≤𝑣≤𝑛2,
1≤m≤105
思路:就是看n1中的点是否有n2中的点和其配对,若有未配对的点,则一定可以配对,此时匹配数加一。若当前点已经和n1中点j进行了配对,则考虑点j能不能换n2中别的点进行配对,若可以则匹配数加一,若始终不能有配对的点,则匹配数不变。
本题要注意的点:
1.判断是否有别的点和j配对的时候,复用了配对函数
2.注意复用函数里面只能配对别的点,不能说在对这个n2中的点尝试让其他点换一个,即对于n2中的每一个点,在一次完整的配对过程中只能配对一次,用数组v记录n2中的点是否已经尝试过配对。每次遍历n1的点前都先让n2中所有点尝试配对状态时false,每次找n2中的点,若尝试找别的配对点,都先将n2中该点状态置为true。
#include<iostream>
#include<cstring>
using namespace std;
const int N=100010;
int h[N],e[N],idx,ne[N];
int per[510];
int m,n1,n2;
bool v[510];
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
bool monk(int u)
{
for(int j=h[u];j!=-1;j=ne[j])
{
int t=e[j];
if(!v[t])
{
v[t]=true;
if(!per[t]||monk(per[t]))
{
per[t]=u;
return true;
}
}
}
return false;
}
int main()
{
memset(h,-1,sizeof h);
scanf("%d%d%d",&n1,&n2,&m);
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
int ans=0;
for(int i=1;i<=n1;i++)
{
memset(v,false,sizeof v);
if(monk(i))ans++;
}
printf("%d\n",ans);
return 0;
}