题目链接
题意
- 输入一棵
n(n
≤
105)
个结点的无根树,
i
号结点的权值为
c[i] 。 - 有
q(q
≤
105)
次查询,每次查询格式为:
s,t,a,b
,求从
s
号结点到
t 结点的最短路径所经过的所有结点中权值在 [a,b] 范围内的权值和。
分析
这道题很容易想到暴力的做法:
先把无根树转化为有根树,DFS一遍确定各个结点的深度和父亲,然后对于每次查询,s和t中较深的先往上遍历至s和t深度相同,然后s和t再同时向上遍历至相遇(即它们的LCA),在两个点向上遍历的过程中累加在[a,b]范围内的权值即可。
但这样做的时间复杂度上界是
O(1010)
,即输入一条链,每次查询
s
和
附官方题解:
之后再补规范解法吧。。。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#define ls (rt<<1)
#define rs (rt<<1|1)
using namespace std;
typedef long long LL;
const double pi=4*atan(1.0);
const int MAXN=100010;
const int MAXM=2*MAXN;
struct Edge
{
int to,next;
}e[MAXM];
int n,m,edgenum,head[MAXN],depth[MAXN],fa[MAXN],c[MAXN];
void Add_Edge(int u,int v)
{
e[++edgenum]=(Edge){v,head[u]};
head[u]=edgenum;
}
void DFS(int u,int p,int d)
{
depth[u]=d;fa[u]=p;
for (int t=head[u];t!=-1;t=e[t].next)
{
int v=e[t].to;
if (v==p) continue;
DFS(v,u,d+1);
}
}
int main()
{
int i,u,v,s,t,a,b,q;
LL ans;
while (scanf("%d%d",&n,&q)!=EOF)
{
for (i=1;i<=n;i++)
scanf("%d",&c[i]);
edgenum=0;
memset(head,-1,sizeof(head));
for (i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
Add_Edge(u,v);
Add_Edge(v,u);
}
DFS(1,-1,0);///把1号当成根节点
while (q--)
{
scanf("%d%d%d%d",&s,&t,&a,&b);
if (depth[s]<depth[t]) swap(s,t);
ans=0;
while (depth[s]>depth[t])///先爬升到同一高度
{
ans+=((a<=c[s]&&c[s]<=b)?c[s]:0);
s=fa[s];
}
while (s!=t)///一起爬升到LCA
{
ans+=((a<=c[s]&&c[s]<=b)?c[s]:0);
ans+=((a<=c[t]&&c[t]<=b)?c[t]:0);
s=fa[s];t=fa[t];
}
ans+=((a<=c[s]&&c[s]<=b)?c[s]:0);
if (q==0) printf("%lld\n",ans);
else printf("%lld ",ans);
}
}
return 0;
}
/*
5 3
1 2 1 3 2
1 2
2 4
3 1
2 5
4 5 1 3
1 1 1 1
3 5 2 3
*/