HDU 6162 Ch’s gift (树的路径问题 DFS LCA 17多校第九场第2题)

题目链接

HDU6162

题意

  • 输入一棵 n(n 105) 个结点的无根树, i 号结点的权值为c[i]
  • q(q 105) 次查询,每次查询格式为: s,t,a,b ,求从 s 号结点到t结点的最短路径所经过的所有结点中权值在 [a,b] 范围内的权值和。

分析

这道题很容易想到暴力的做法:

先把无根树转化为有根树,DFS一遍确定各个结点的深度和父亲,然后对于每次查询,s和t中较深的先往上遍历至s和t深度相同,然后s和t再同时向上遍历至相遇(即它们的LCA),在两个点向上遍历的过程中累加在[a,b]范围内的权值即可。

但这样做的时间复杂度上界是 O(1010) ,即输入一条链,每次查询 s t都是链的两端,理论上肯定超时。所以当时比赛的时候不敢写暴力,但这道题AC的人数很多,事后才知道很多人是暴力过的。。。这告诉我们AC人数多的题还是可以大力出奇迹的。
附官方题解:
这里写图片描述
之后再补规范解法吧。。。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#define ls (rt<<1)
#define rs (rt<<1|1)
using namespace std;
typedef long long LL;
const double pi=4*atan(1.0);
const int MAXN=100010;
const int MAXM=2*MAXN;
struct Edge
{
    int to,next;
}e[MAXM];
int n,m,edgenum,head[MAXN],depth[MAXN],fa[MAXN],c[MAXN];
void Add_Edge(int u,int v)
{
    e[++edgenum]=(Edge){v,head[u]};
    head[u]=edgenum;
}
void DFS(int u,int p,int d)
{
    depth[u]=d;fa[u]=p;
    for (int t=head[u];t!=-1;t=e[t].next)
    {
        int v=e[t].to;
        if (v==p) continue;
        DFS(v,u,d+1);
    }
}
int main()
{
    int i,u,v,s,t,a,b,q;
    LL ans;
    while (scanf("%d%d",&n,&q)!=EOF)
    {
        for (i=1;i<=n;i++)
            scanf("%d",&c[i]);
        edgenum=0;
        memset(head,-1,sizeof(head));
        for (i=1;i<n;i++)
        {
            scanf("%d%d",&u,&v);
            Add_Edge(u,v);
            Add_Edge(v,u);
        }
        DFS(1,-1,0);///把1号当成根节点
        while (q--)
        {
            scanf("%d%d%d%d",&s,&t,&a,&b);
            if (depth[s]<depth[t]) swap(s,t);
            ans=0;
            while (depth[s]>depth[t])///先爬升到同一高度
            {
                ans+=((a<=c[s]&&c[s]<=b)?c[s]:0);
                s=fa[s];
            }
            while (s!=t)///一起爬升到LCA
            {
                ans+=((a<=c[s]&&c[s]<=b)?c[s]:0);
                ans+=((a<=c[t]&&c[t]<=b)?c[t]:0);
                s=fa[s];t=fa[t];
            }
            ans+=((a<=c[s]&&c[s]<=b)?c[s]:0);
            if (q==0) printf("%lld\n",ans);
            else printf("%lld ",ans);
        }
    }
    return 0;
}
/*
5 3
1 2 1 3 2
1 2
2 4
3 1
2 5
4 5 1 3
1 1 1 1
3 5 2 3
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值