题目背景
科学院的领袖Dunkelheit 的任期,随着局势的平复很快就要结束了。于是,这次具有非凡意义的科学院新领袖的选举很快就要开始了。
题目描述
选举的第一步是辩论赛。它的规则是这样的:如果当前剩下的候选人多于2 人,那么就从中任选2 人进行辩论。输者退出比赛,胜利者继续留在比赛中,如此直到只剩下一个候选人,他就取得了辩论赛的胜利。辩论赛的胜者在后面的选举中将会更占优势,所以说人们都很关注这次比赛的结果,历史学家Geheimnis 也不例外。他收集了所有N 个候选人的资料,发现如果两个候选人以前曾经比赛过,那么这两个人再次比赛的时候比赛结果是很难改变的(可以认为是不可能)。按照Geheimnis 掌握的情报,你需要帮助他判断那些候选人有可能取得胜利。
输入输出格式
输入格式:
第一行包含一个正整数N,表示候选人的数目。
之后 N 行,候选人从1 开始编号,第(i + 1)行描述第 i 个候选人。第一个数为K,后面K 个编号,表示候选人 i 之前赢过的候选人。
输出格式:
输出一行。第一个数为C,表示有C 个候选人有可能取得胜利;之后C 个数表示他们的编号。
输入输出样例
输入样例#1:
4
2 2 3
0
1 2
1 2
输出样例#1:
3 1 3 4
说明
对于50% 的数据,N≤200。
对于 100% 的数据,N≤106,胜负关系不会超过106 对。
思路是,出度最大的一定可能胜利,然后用这些可能胜利的点去试那些不确定的点,因为可能胜利的点无法判断是否打赢的点一定是可能胜利的
#include<cstdio>
using namespace std;
#define max(a,b) ((a)>(b)?(a):(b))
int read(){
int rt=0,fl=1;char ch=getchar();
while(ch<'0' || ch>'9'){if(ch=='-')fl=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){rt=rt*10+ch-'0';ch=getchar();}
return rt*fl;
}
const int maxn = 2000000;
int h[maxn],nx[maxn],to[maxn],cnt;
int chudu[maxn];
int pr[maxn],af[maxn];
bool isWinner[maxn];
int cnt_winner;
int n;
int q[maxn],l,r;
void add_edge(int u,int v){
cnt++;
to[cnt]=v;
nx[cnt]=h[u];
h[u]=cnt;
}
void del(int nd){
af[pr[nd]]=af[nd];
pr[af[nd]]=pr[nd];
}
void bfs(){
while(l<r){
int t=q[l++];
t=h[t];
int x=pr[n+1];
while(x!=0){
while(x<to[t] && t!=0){
t=nx[t];
}
if(x!=to[t]){
isWinner[x]=1;
del(x);
cnt_winner++;
q[r++]=x;
}
x=pr[x];
}
}
}
int main(){
int max_chudu=0;
n=read();
for(int i=1;i<=n+1;i++){
pr[i]=i-1;af[i]=i+1;
}
for(int i=1;i<=n;i++){
chudu[i]=read();
max_chudu=max(max_chudu,chudu[i]);
for(int j=chudu[i];j>0;j--){
int a=read();
add_edge(i,a);
}
}
for(int i=1;i<=n;i++){
if(chudu[i]==max_chudu){
q[r++]=i,isWinner[i]=1;del(i);cnt_winner++;
}
}
bfs();
printf("%d",cnt_winner);
for(int i=1;i<=n;i++)if(isWinner[i])printf(" %d",i);
return 0;
}