18、混合态纠缠与量子通信:从可分性判据到正映射理论

混合态纠缠与量子通信:从可分性判据到正映射理论

在量子信息领域,混合态纠缠的研究对于理解量子系统的特性以及实现量子通信至关重要。本文将深入探讨混合态可分性的必要条件,以及纠缠与正映射理论之间的紧密联系。

1. 混合态可分性的必要条件

可分态满足的条件被称为可分性判据。如果一个态违反了某个可分性判据,那么它必然是纠缠态。因此,寻找强大的可分性判据,即能被尽可能多的纠缠态违反的判据,是非常重要的。

1.1 基于贝尔不等式的判据

贝尔不等式的违反是量子纠缠的一种表现,因此贝尔不等式构成了一种自然的可分性判据。Werner 指出,可分态必须满足所有可能的贝尔不等式。常见的 Clauser - Horne - Shimony - Holt(CHSH)贝尔不等式为:
[Tr\ \rho B \leq 2]
其中,贝尔 - CHSH 可观测量 (B) 定义为:
[B = \hat{a}\sigma \otimes (\hat{b} + \hat{b}’)\sigma + \hat{a}’\sigma \otimes (\hat{b} - \hat{b}’)\sigma]
这里,(\hat{a},\ \hat{a}’,\ \hat{b},\ \hat{b}’) 是 (\mathbb{R}^3) 中的任意单位向量,(\hat{a}\sigma = \sum_{i = 1}^{3} a_i\sigma_i),(\sigma_i) 是泡利矩阵。对于不同的向量组,会得到不同的不等式。

对于两比特态,存在一个等价于同时满足所有这些不等式的条件:
[M(\rho) \leq 1]
其中,(M) 的构造方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值