机器学习
@(My machine learing)
The introduction
Two definitions
- The old one
“the field of study that gives computers the ability to learn without being explicitly programmed.”
让机器拥有能够不需要被具体化编程而学习的能力。 - The new one
“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”
计算机能够根据能够被P量化的某一个任务T的多种经验E,来提升自己完成任务T的P值的一种程序。
Example : playing check- E = the experience of playing many games of checkers
- T = the task of playing checkers.
- P = the probability that the program will win the next game.
Two broad classifications
-
supervised learning
You know what result will turn out’- classification
Right or worse just several choice - regression
maybe a formula to know the result
- classification
-
unsupervised learning
Allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don’t necessarily know the effect of the variables.
It doesn’t have a feedbback to check is right or not- cluster
according to what data are have to have a distinction between this data - cocktail
voice repair
- cluster