LIS的单调栈解法

这题

第一问最长不上升子序列

此时维护的单调栈具有不上升的性质 即非严格的递减 我们的目的是让栈中的元素尽可能的多 所以相等的元素保留在栈中

第二问最长上升子序列

此时需要严格递增 所以相等的元素需要替换

    for(int i=0;i<n;i++)//最长不上升子序列的长度
    {
        if(!k)
            stk[k++]=a[i];
        else
        {
            int pos=upper_bound(stk,stk+k,a[i],cmp)-stk;
            stk[pos]=a[i];
            if(pos==k)k++;
        }
    }
    ans1=k;

    for(int i=0;i<n;i++)//最长上升子序列的长度
    {
        if(!k)
            stk[k++]=a[i];
        else
        {
            int pos=lower_bound(stk,stk+k,a[i])-stk;
            stk[pos]=a[i];
            if(pos==k)k++;
        }
    }
    ans2=k;

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值