图G=(V,E)中顶点v的度(degree)是图G中与v关联的边的数目(与v关联的每个环要计算两次),记为dG(v)或者记为d(v)。称顶点v为偶点(even vertex),如果d(v)是偶数;称顶点v为奇点(odd vertex) ,如果d(v)是奇数. 称顶点v为孤立点(isolated vertex),如果d(v)=0.称顶点v为悬挂点(pendant vertex),如果d(v)=1
对于一个给定的图G=(V,E),V=(v1,v2 ,···,vn),可以得到一个序列(di1,di2···din),其中dj=d(vj),di1≤di2≤···≤din,称(di1,di2···din),为图G的度序列.
示例:
握手定理:设G=(V,E)是一个图,
则 ∑v∈Vd(v)=2|E| .
定理的证明很显然,因为图G的每条边和两个顶点相关联.
握手定理的推论:设G=(V,E)是一个图,则G中奇数顶点的个数为偶数.
证明: 我们把图G的顶点集V划分为两部分V1 和V2,其中V1是G中所有的奇点集合,V2是G中所有的偶点集合,则V=V1∪V2,V1∩V2=Ø,由握手定理可得
∑v∈V1d(v) +∑v∈V2d(v)=2|E|,
而∑ v∈V2d(v)是偶数,所以∑ v∈V1d(v)也是一个偶数,即可得到|V 1|是偶数