吴恩达视频-第一门课第2周2.10节-m 个样本的梯度下降(Gradient Descent on m Examples)

2.10 m 个样本的梯度下降(Gradient Descent on m Examples)
  在之前的视频中,你已经看到如何计算导数,以及应用梯度下降在逻辑回归的一个训练样本上。现在我们想要把它应用在𝑚个训练样本上。
在这里插入图片描述
  首先,让我们时刻记住有关于损失函数𝐽(𝑤, 𝑏)的定义。
   J ( w , b ) = 1 m ∑ i = 1 m L ( a ( i ) , y ( i ) ) J(w,b)=\frac{1}{m}\sum\nolimits_{i=1}^{m}{L({{a}^{(i)}},{{y}^{(i)}})} J(w,b)=m1i=1mL(a(i),y(i))
  当你的算法输出关于样本𝑦的 a ( i ) {{a}^{(i)}} a(i) a ( i ) {{a}^{(i)}} a(i)是训练样本的预测值,即:𝜎( z ( i ) {{z}^{(i)}} z(i)) = 𝜎( w T x ( i ) {{w}^{T}}{{x}^{(i)}} wTx(i)+ 𝑏)。 所以我们在前面的幻灯中展示的是对于任意单个训练样本,如何计算微分当你只有一个训练样本。因此𝑑 w 1 {{w}_{1}} w1,𝑑 w 2 {{w}_{2}} w2和𝑑𝑏 添上上标𝑖表示你求得的相应的值。如果你面对的是我们在之前的幻灯中演示的那种情况,但只使用了一个训练样本( x ( i ) {{x}^{(i)}} x(i), y ( i ) {{y}^{(i)}} y(i))。
  现在你知道带有求和的全局代价函数,实际上是 1 到𝑚项各个损失的平均。 所以它表明全局代价函数对 w 1 {{w}_{1}} w1的微分,对 w 1 {{w}_{1}} w1的微分也同样是各项损失对 w 1 {{w}_{1}} w1微分的平均。
在这里插入图片描述
  但之前我们已经演示了如何计算这项,即之前幻灯中演示的如何对单个训练样本进行计算。所以你真正需要做的是计算这些微分,如我们在之前的训练样本上做的。并且求平均,这会给你全局梯度值,你能够把它直接应用到梯度下降算法中。
  所以这里有很多细节,但让我们把这些装进一个具体的算法。同时你需要一起应用的就是逻辑回归和梯度下降。
  我们初始化𝐽 = 0, 𝑑 w 1 {{w}_{1}} w1 = 0, 𝑑 w 2 {{w}_{2}} w2 = 0, 𝑑𝑏 = 0
  代码流程:
在这里插入图片描述
在这里插入图片描述
  幻灯片上只应用了一步梯度下降。因此你需要重复以上内容很多次,以应用多次梯度下降。看起来这些细节似乎很复杂,但目前不要担心太多。希望你明白,当你继续尝试并应用这些在编程作业里,所有这些会变的更加清楚。
  但这种计算中有两个缺点,也就是说应用此方法在逻辑回归上你需要编写两个 for 循环。第一个 for 循环是一个小循环遍历𝑚个训练样本,第二个 for 循环是一个遍历所有特征的 for循环。这个例子中我们只有 2 个特征,所以𝑛等于 2 并且 n x {{n}_{x}} nx 等于 2。 但如果你有更多特征,你开始编写你的因此𝑑 w 1 {{w}_{1}} w1,𝑑 w 2 {{w}_{2}} w2,你有相似的计算从𝑑 w 3 {{w}_{3}} w3一直下去到𝑑 w n {{w}_{n}} wn。所以看来你需要一个 for 循环遍历所有𝑛个特征。
  当你应用深度学习算法,你会发现在代码中显式地使用 for 循环使你的算法很低效,同时在深度学习领域会有越来越大的数据集。所以能够应用你的算法且没有显式的 for 循环会是重要的,并且会帮助你适用于更大的数据集。所以这里有一些叫做向量化技术,它可以允许你的代码摆脱这些显式的 for 循环。
  我想在先于深度学习的时代,也就是深度学习兴起之前,向量化是很棒的。可以使你有时候加速你的运算,但有时候也未必能够。但是在深度学习时代向量化,摆脱 for 循环已经变得相当重要。因为我们越来越多地训练非常大的数据集,因此你真的需要你的代码变得非常高效。所以在接下来的几个视频中,我们会谈到向量化,以及如何应用向量化而连一个 for循环都不使用。所以学习了这些,我希望你有关于如何应用逻辑回归,或是用于逻辑回归的梯度下降,事情会变得更加清晰。当你进行编程练习,但在真正做编程练习之前让我们先谈谈向量化。然后你可以应用全部这些东西,应用一个梯度下降的迭代而不使用任何 for 循环。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

越努力越幸运@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值