A 掌握魔法の东东 II
1. 题目大意
东东有 A × B 张扑克牌。每张扑克牌有一个大小(整数,记为a,范围区间是 0 到 A - 1)和一个花色(整数,记为b,范围区间是 0 到 B - 1。
扑克牌是互异的,也就是独一无二的,也就是说没有两张牌大小和花色都相同。
“一手牌”的意思是你手里有5张不同的牌,这 5 张牌没有谁在前谁在后的顺序之分,它们可以形成一个牌型。 我们定义了 9 种牌型,如下是 9 种牌型的规则,我们用“低序号优先”来匹配牌型,即这“一手牌”从上到下满足的第一个牌型规则就是它的“牌型编号”(一个整数,属于1到9):
1.同花顺: 同时满足规则 5 和规则 4.
2.炸弹 : 5张牌其中有4张牌的大小相等.
3.三带二 : 5张牌其中有3张牌的大小相等,且另外2张牌的大小也相等.
4.同花 : 5张牌都是相同花色的.
5.顺子 : 5张牌的大小形如 x, x + 1, x + 2, x + 3, x + 4
6.三条: 5张牌其中有3张牌的大小相等.
7.两对: 5张牌其中有2张牌的大小相等,且另外3张牌中2张牌的大小相等.
8.一对: 5张牌其中有2张牌的大小相等.
9.要不起: 这手牌不满足上述的牌型中任意一个.
现在, 东东从A × B 张扑克牌中拿走了 2 张牌!分别是 (a1, b1) 和 (a2, b2). (其中a表示大小,b表示花色)
现在要从剩下的扑克牌中再随机拿出 3 张!组成一手牌!!
其实东东除了会打代码,他业余还是一个魔法师,现在他要预言他的未来的可能性,即他将拿到的“一手牌”的可能性,我们用一个“牌型编号(一个整数,属于1到9)”来表示这手牌的牌型,那么他的未来有 9 种可能,但每种可能的方案数不一样。
现在,东东的阿戈摩托之眼没了,你需要帮他算一算 9 种牌型中,每种牌型的方案数。
输入:
第 1 行包含了整数 A 和 B (5 ≤ A ≤ 25, 1 ≤ B ≤ 4)
第 2 行包含了整数 a1, b1, a2, b2 (0 ≤ a1, a2 ≤ A - 1, 0 ≤ b1, b2 ≤ B - 1, (a1, b1) ≠ (a2, b2))
输出:
输出一行,这行有 9 个整数,每个整数代表了 9 种牌型的方案数(按牌型编号从小到大的顺序)
样例:
25 4
0 0 24 3
0 2 18 0 0 644 1656 36432 113344
2. 思路历程
- 刚拿到题目想到的是排列组合题,由于B的范围比较小,考虑对B的每个取值
1 ≤ B ≤ 4
进行讨论,结果用A表示,最后代入A求解。
(然后发现自己对排列组合完全不行,不是漏就是重,大型学还师现象…) - 其实按照这道题A、B的范围完全可以暴力枚举,六重循环选出剩下的三张牌,再对每一个牌型进行判断。
3. 具体实现
- 创建数组card_pattern用于记录每种牌型的方案数,数组a、b分别用于记录五张牌的大小和花色(用数组记录方便排序和遍历)。
- 六重循环选出三张牌,每两个循环(每选一张牌)判断是否重复,选出五张不同的牌。
- 函数
solve(int a3, int b3, int a4, int b4, int a5, int b5)
用于判断牌型,其中再调用函数pattern1()~pattern9()
用于判断每种牌型。 - 由于选牌时只考虑了牌不相同但没有考虑牌的顺序,因此重复求了相同牌但不同顺序的方案,根据排列公式
card_pattern[i] / 6
才是最终结果。
4. 代码
#include <iostream>
#include <algorithm>
using namespace std;
int A, B, a1, b1, a2, b2;
int card_pattern[9] = {0};
int a[5], b[5];
bool pattern2()
{
if ((a[0] == a[1] && a[1] == a[2] && a[2] == a[3]) || (a[1] == a[2] && a[2] == a[3] && a[3] == a[4]))
return true;
return false;
}
bool pattern3()
{
if ((a[0] == a[1] && a[1] == a[2] && a[3] == a[4]) || (a[0] == a[1] && a[2] == a[3] && a[3] == a[4]))
return true;
return false;
}
bool pattern4()
{
if (b[0] == b[1] && b[1] == b[2] && b[2] == b[3] && b[3] == b[4])
return true;
return false;
}
bool pattern5()
{
for (int i = 0; i < 4; i++)
{
if (a[i + 1] != a[i] + 1)
return false;
}
return true;
}
bool pattern1()
{
if (pattern4() && pattern5())
return true;
return false;;
}
bool pattern6()
{
if ((a[0] == a[1] && a[1] == a[2]) || (a[1] == a[2] && a[2] == a[3]) || (a[2] == a[3] && a[3] == a[4]))
return true;
return false;
}
bool pattern7()
{
if ((a[0] == a[1] && a[2] == a[3]) || (a[0] == a[1] && a[3] == a[4]) || (a[1] == a[2] && a[3] == a[4]))
return true;
return false;
}
bool pattern8()
{
if (a[0] == a[1] || a[1] == a[2] || a[2] == a[3] || a[3] == a[4])
return true;
return false;
}
void solve(int a3, int b3, int a4, int b4, int a5, int b5)
{
a[0] = a1; a[1] = a2; a[2] = a3; a[3] = a4; a[4] = a5;
b[0] = b1; b[1] = b2; b[2] = b3; b[3] = b4; b[4] = b5;
sort(a, a + 5);
sort(b, b + 5);
if (pattern1()) card_pattern[0]++;
else if (pattern2()) card_pattern[1]++;
else if (pattern3()) card_pattern[2]++;
else if (pattern4()) card_pattern[3]++;
else if (pattern5()) card_pattern[4]++;
else if (pattern6()) card_pattern[5]++;
else if (pattern7()) card_pattern[6]++;
else if (pattern8()) card_pattern[7]++;
else card_pattern[8]++;
}
int main()
{
cin >> A >> B >> a1 >> b1 >> a2 >> b2;
for (int i = 0; i < A; i++)
for (int j = 0; j < B; j++)
if ((i != a1 || j != b1) && (i != a2 || j != b2))
{
for (int k = 0; k < A; k++)
for (int u = 0; u < B; u++)
if ((k != i || u != j) && (k != a1 || u != b1) && (k != a2 || u != b2))
{
for (int v = 0; v < A; v++)
for (int w = 0; w < B; w++)
if ((v != i || w != j) && (v != k || w != u) && (v != a1 || w != b1) && (v != a2 || w != b2))
solve(i, j, k, u, v, w);
}
}
for (int i = 0; i < 9; i++)
cout << card_pattern[i] / 6 << " ";
cout << endl;
return 0;
}