文章目录
A 签到题
1.题目大意
游戏“Game23”:
一开始有一个数字n,目标是把它转换成m,在每一步操作中,可以将n乘以2或乘以3,可以进行任意次操作。输出将n转换成m的操作次数,如果转换不了输出-1。
输入:
输入的唯一一行包括两个整数n和m(1<=n<=m<=5*10^8).
输出:
输出从n转换到m的操作次数,否则输出-1.
样例:
120 51840
7
42 42
0
48 72
-1
2. 思路历程
- 要求出 n 乘以几个2或3可以转换成 m,可以先用m / n,再对商分解公因式。
- 若商不是整数,则肯定无法转换
- 若商是整数,再循环除以2和3
- 退出循环后,若商为1,则可以转换,若为0,则不能转换
- (具体实现没有什么细节,就不记录辽)
3. 代码
#include <iostream>
using namespace std;
int n, m, res, cnt = 0;
int main()
{
cin >> n >> m;
if (m % n == 0)
{
res = m / n;
while (!(res % 2))
{
res /= 2;
cnt++;
}
while (!(res % 3))
{
res /= 3;
cnt++;
}
if (res == 1) cout << cnt << endl;
else cout << "-1" << endl;
}
else
cout << "-1" << endl;
return 0;
}
B LIS & LCS
1.题目大意
东东有两个序列A和B,他想要知道序列A的LIS和序列AB的LCS的长度。
注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。
输入:
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
输出:
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度
样例:
5 5
1 3 2 5 4
2 4 3 1 5
3 2
2. 思路历程
- 引入动态规划的两个经典问题
- 最长上升子序列 LIS
1)给定n个整数a1, a2, … , an,按从左到右的顺序选出尽量多的整数,组成一个递增的子序列。
2)定义 f[i] 表示以 ai 为结尾的最长上升序列的方程,初始化f[1] = 1
f[i] 取决于 ai 前有多少个比 ai 小的数,因此可得到
3)转移过程:f[i] = max{ fj | j < i && aj < ai} + 1
4)LIS = max{ f[i], i = 1, 2, ..., n}
- 最长公共子序列 LCS
1)给定两个序列 a 和 b,按从左到右的顺序找到两个序列的公共部分,组成一个子序列。
2)定义 f[i][j] 为a1, a2, …, ai 和b1, b2, …, bj的LCS长度,初始化f[1][0] = f[0][1] = 0
对于公共的元素ai, bj,更新公共序列长度为 + 1,对于非公共元素,取之前的公共序列长度
3)转移过程:当 ai = bi 时,f[i][j] = f[i-1][j-1] + 1
,否则f[i][j] = man{f[i-1][j], f[i][j-1]}
4)LCS = f[n][m]
3. 具体实现
- 数组f1[maxn] 和 f2[maxn][maxn]分别用来表示 LIS 和 LCS 的转移方程
- 遍历每对i, j(j < i),当a[j] < a[i]时即可更新f1[i]。
(这里注意要在对某个 i 所有的 j 都考虑完后再更新 LIS 值,我刚开始在考虑每个 j 时都更新是错误的) - 遍历每个 a[i] 和 b[j],按照思路更新f2即可。
4. 代码
#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
const int maxn = 5055;
int n, m, ans1 = 0, ans2 = 0;
int A[maxn], B[maxn], f1[maxn], f2[maxn][maxn];
int main()
{
cin >> n >> m;
memset(f1, 0, sizeof(f1));
memset(f2, 0, sizeof(f2));
for (int i = 0; i < n; i++)
{
cin >> A[i];
f1[i] = 1;
}
for (int i = 0; i < m; i++) cin >> B[i];
for (int i = 0; i < n; i++)
{
for (int j = 0; j < i; j++)
{
if (A[j] < A[i])
f1[i] = max(f1[i], f1[j] + 1);
}
ans1 = max(ans1, f1[i]);
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (A[i - 1] == B[j - 1])
f2[i][j] = max(f2[i][j], f2[i - 1][j - 1] + 1);
else
f2[i][j] = max(f2[i][j - 1] , f2[i - 1][j]);
}
}
ans2 = f2[n][m];
cout << ans1 << " " << ans2;
return 0;
}
C 拿数问题 II
1.题目大意
YJQ 上完第10周的程序设计思维与实践后,想到一个绝妙的主意,他对拿数问题做了一点小修改,使得这道题变成了 拿数问题 II。
给一个序列,里边有 n 个数,每一步能拿走一个数,比如拿第 i 个数, Ai = x,得到相应的分数 x,但拿掉这个 Ai 后,x+1 和 x-1 (如果有 Aj = x+1 或 Aj = x-1 存在) 就会变得不可拿(但是有 Aj = x 的话可以继续拿这个 x)。求最大分数。
本题和课上讲的有些许不一样,但是核心是一样,需要你自己思考。
输入:
第一行包含一个整数 n (1 ≤ n ≤ 105),表示数字里的元素的个数
第二行包含n个整数a1, a2, …, an (1 ≤ ai ≤ 105)
输出:
输出一个整数:n你能得到最大分值。
样例:
9
1 2 1 3 2 2 2 2 3
10
2. 思路历程
- 动态规划的另一个经典问题
- dp[i] 表示仅考虑 a[1]~a[i] 时可以拿到的总数
- 对每个数 x 都有拿和不拿两种选择,不拿的话只考虑 dp[i-1] 的值,拿的话考虑dp[i-2] + 所有x的值,因此得出
- 转移过程:
dp[i] = max{dp[i-1], dp[i-2] + i * cnt[i]}
3. 具体实现
- 记录每个 a[i] 出现的个数,用于拿x的时候更新总数。
- 遍历时也是根据 a[i] 的值而不是 i 进行遍历,cnt[i] 已经限制了拿的数的大小(若不存在 a[i] = x 那么 cnt[x] = 0),与n个数不是连续的不冲突
(这里刚开始逻辑有点不清晰)
4. 代码
#include <iostream>
#include <algorithm>
#include <string.h>
#include <cmath>
using namespace std;
const int maxn = 100011;
long long n, a[maxn], cnt[maxn], dp[maxn], maxdp;
int main()
{
cin >> n;
memset(cnt, 0, sizeof(cnt));
for (int i = 0; i < n; i++)
{
cin >> a[i];
cnt[a[i]]++;
}
sort(a, a + n);
for (long long i = a[0]; i <= a[n - 1]; i++)
{
dp[i] = max(dp[i - 1], dp[i - 2] + i * cnt[i]);
maxdp = max(maxdp, dp[i]);
}
cout << maxdp << endl;
return 0;
}