Ubuntu16.04编译tensorflow的C++接口

18 篇文章 0 订阅
11 篇文章 0 订阅

原文:https://www.bearoom.xyz/2018/09/27/ubuntu1604buildtf4cpp/

之前有一篇介绍到在windows下利用VS2015编译tensorflow的C++接口,接下来这篇就介绍下在Ubuntu下编译tensorflow的C++接口。

先说一下我的电脑配置,首先是Ubuntu16.04,anaconda用的是3.4.2,CUDA用的是9.0的,cudnn用的是7.0.5的。因为已经在anaconda3上安装好了tensorflow1.7的,但是这次要编译C++的接口,所以我还是选择编译tensorflow1.7的源码。最近重新编译的时候改用了tensorflow1.12。

一、准备编译环境

编译这里要用到bazel来编译,所以要安装它,Ubuntu下安装的指令如下:

echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list

然后输入以下指令:

curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -

更新:

sudo apt-get update

安装bazel

sudo apt-get install bazel

这里不要这么做了,因为这么做会把bazel更新到最新的版本,但是编译tensorflow的时候,不同tensorflow要与bazel的版本是对应的,如果这么做的话,后面的操作就会出错,而且也不知道怎么解决。正确的做法应该是下载对应的版本来安装bazel,tensorflow与bazel的版本应该在tensorflow的官网查找:https://tensorflow.google.cn/install/source

linux下tensorflow与python、GCC、Bazel的版本关系,GCC倒是没有问题,应该支持C++11就可以,但bazel就真的还是要对应好版本,不然一大堆问题,折腾。

Version

Python version

Compiler

Build tools 

tensorflow-2.1.0

2.7, 3.5-3.7

GCC 7.3.1Bazel 0.27.1

tensorflow-2.0.0

2.7, 3.3-3.7

GCC 7.3.1Bazel 0.26.1

tensorflow-1.14.0

2.7, 3.3-3.7

GCC 4.8

Bazel 0.24.1

tensorflow-1.13.1

2.7, 3.3-3.7

GCC 4.8

Bazel 0.19.2

tensorflow-1.12.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.15.0

tensorflow-1.11.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.15.0

tensorflow-1.10.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.15.0

tensorflow-1.9.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.11.0

tensorflow-1.8.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.10.0

tensorflow-1.7.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.10.0

tensorflow-1.6.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.9.0

tensorflow-1.5.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.8.0

tensorflow-1.4.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.5.4

tensorflow-1.3.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.4.5

tensorflow-1.2.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.4.5

tensorflow-1.1.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.4.2

tensorflow-1.0.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.4.2

Version

Python version

Compiler

Build tools

cuDNN

CUDA

tensorflow-2.1.0

2.7, 3.5-3.7

GCC 7.3.1

Bazel 0.27.1

7.6

10.1

tensorflow-2.0.0

2.7, 3.3-3.7

GCC 7.3.1

Bazel 0.26.1

7.4

10.0

tensorflow_gpu-1.14.0

2.7, 3.3-3.7

GCC 4.8

Bazel 0.24.1

7.4

10.0

tensorflow_gpu-1.13.1

2.7, 3.3-3.7

GCC 4.8

Bazel 0.19.2

7.4

10.0

tensorflow_gpu-1.12.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.15.0

7

9

tensorflow_gpu-1.11.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.15.0

7

9

tensorflow_gpu-1.10.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.15.0

7

9

tensorflow_gpu-1.9.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.11.0

7

9

tensorflow_gpu-1.8.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.10.0

7

9

tensorflow_gpu-1.7.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.9.0

7

9

tensorflow_gpu-1.6.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.9.0

7

9

tensorflow_gpu-1.5.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.8.0

7

9

tensorflow_gpu-1.4.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.5.4

6

8

tensorflow_gpu-1.3.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.4.5

6

8

tensorflow_gpu-1.2.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.4.5

5.1

8

tensorflow_gpu-1.1.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.4.2

5.1

8

tensorflow_gpu-1.0.0

2.7, 3.3-3.6

GCC 4.8

Bazel 0.4.2

5.1

8

其他的应该就没啥,就是这个bazel把我给折腾的啊。

这里tensorflow1.12对应的bazel版本是0.15.0,所以去github搜bazel下载http://bazel-0.15.0-installer-linux-x86_64.sh,然后安装。

二、下载tensorflow源码

tensorflow的源码是在github上就可以下载的,目前已经更新到1.11,但是我还是下载了1.7的版本,都已经2.0了,不过我还是下载了1.12,下载之后解压出来。

三、配置编译环境

解压源码之后,进入根目录,输入指令:

./configure

接下来就是配置清单:

这里要说明的是如果有CUDA,那么Do you wish to build Tensorflow with CUDA?一定要选Y,然后其它的我基本都是N

配置好之后就进行编译:

bazel build --config=opt --config=cuda //tensorflow:libtensorflow_cc.so

这里如果不用cuda的话(前面配置的时候就不要在CUDA那一项那里输入Y),就输入:

bazel build --config=opt  //tensorflow:libtensorflow_cc.so

然后是等待,这个过程大概会花费30分钟左右,而且CPU的占用量是达到100%的,所以这个时候最好就不要坐别的事情了。

编译之后我这里会有一个问题(这个问题我在编译tensorflow1.12的时候没有遇到,所以看不同版本吧):

​这个错误并不是因为文件没有而是因为找不到,实际上,这个文件就在tensorflow-r1.7/tensorflow文件夹下,但是需要修改/tensorflow-r1.7/tensorflow/BUILD这个文件才行,打开这个文件之后修改大概在812行,注释掉后,另起一行设置正确的路径:

​修改之后重新输入编译的指令编译一次就可以了。编译好之后在文件夹tensorflow-r1.7/bazel-bin/tensorflow下面,会有两个so文件:libtensorflow_cc.so和libtensorflow_framework.so,这两个就是我们需要的。

如果报icu相关的错误,如下:

tensorflow/core/kernel/BUILD:6589:1 no such package '@icu//': java.io.IOException

那基本是icu的文件一直没有下载下来,那就可以考虑先下载文件到本地,利用本地的http服务来做,具体操作:

# 1、安装
sudo apt-get install httpd #这一句之后会提示有很多个,从中选一个来安装
sudo apt-get install apache2
sudo apt-get install apache2-dev
# 2、可以查看是否成功
sudo systemctl status apache2

下载https://codeload.github.com/unicode-org/icu/tar.gz/release-62-1文件,然后放到/var/www/html/目录下,然后修改tensorflow/third_party/icu/workspace.bzl文件,添加

"http://localhost/release-62-1.tar.gz"

 

四、一些错误

下面这几个错误都是在使用的时候发现的,主要是在编译的时候有些依赖文件没有下载到,所以需要自己去下载。

(1)、nsync_cv.h文件缺失:

这个文件一般是会在tensorflow/contrib/makefile/downloads/nsync/public这个文件夹下的,但是我这边是编译tensorflow的时候有些依赖文件没有下载到导致它缺失,解决方法是存在/tensorflow/contrib/makefile/download_dependencies.sh这个文件,执行它来下载相关的文件,相关文件会放在/home/zcx/tensorflow-r1.7/tensorflow/contrib/makefile/downloads这个文件夹下;

这个时候如果有提示:

那就安装curl,然后继续:

sudo apt-get install curl

(2)、提示Eigen相关的问题

这个问题跟前面的类似,如果下载了相关的依赖文件之后,在/tensorflow-r1.7/tensorflow/contrib/makefile/downloads文件夹下找到eigen文件夹,进入之后执行以下指令进行eigen的编译:

mkdir build
cd build
cmake ..
make
sudo make install

(3)、提示关于protobuf版本的问题

问题如下:

这个主要是protobuf版本的问题,所以要查看bazel-genfiles/tensorflow/core/framework/types.pb.h这个文件夹中关于protobuf的版本要求,然后下载相应的版本来更新即可,这里tensorflow1.12要求是protobuf要大于等于3.6

所以就去github上下载对应的protobuf版本。要下载源码,然后编译安装即可。

 

暂时我就遇到这几个问题,之后如果还有遇到其它问题,我会继续更新的。

 

五、参考

1、https://blog.csdn.net/zwx1995zwx/article/details/79064064

阳光
在天上一闪
又被乌云埋掩
暴雨冲洗着
我灵魂的底片

-- 顾城

 

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值