动态规划07-树形 DP

树形 D P DP DP一般思路,从分析子树入手,最优解通常是和子树根节点 u u u相关的函数,状态计算就是寻找根节点和子节点以及权边的递推关系。编写代码,通常需要 d f s dfs dfs,从根到叶,再从叶到根,在合适的时候 D P DP DP

没有上司的舞会

U r a l Ural Ural大学有 N N N名职员,编号为 1 ∼ N 1∼N 1N。他们的关系就像一棵以校长为根的树,父节点就是子节点的直接上司。每个职员有一个快乐指数,用整数 H i Hi Hi给出,其中 1 ≤ i ≤ N 1≤i≤N 1iN。现在要召开一场周年庆宴会,不过,没有职员愿意和直接上司一起参会。在满足这个条件的前提下,主办方希望邀请一部分职员参会,使得所有参会职员的快乐指数总和最大,求这个最大值。
输入格式
第一行一个整数 N N N。接下来 N N N行,第 i i i行表示 i i i号职员的快乐指数 H i Hi Hi。接下来 N − 1 N−1 N1行,每行输入一对整数 L , K L,K L,K,表示 K K K L L L的直接上司。(注意一下,后一个数是前一个数的父节点,不要搞反)。
输出格式
输出最大的快乐指数。
数据范围
1 ≤ N ≤ 6000 1≤N≤6000 1N6000, − 128 ≤ H i ≤ 127 −128≤Hi≤127 128Hi127
输入样例
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
输出样例
5

解决思路

对于一颗以 u u u为根节点的子树,其快乐指数应该是 u u u的函数,分为选择 u u u和不选 u u u。因此对于状态的表示分为两种情况。
d p [ u ] [ 1 ] dp[u][1] dp[u][1]是表示成选择以 u u u为根节点的子树并包含 u u u的快乐指数。
d p [ u ] [ 0 ] dp[u][0] dp[u][0]是表示成选择以 u u u为根节点的子树并不包含 u u u的快乐指数。
对于两种状态的计算也分为不同的方式
s o n son son代表 u u u的子节点
d p [ u ] [ 1 ] = ∑ d p [ s o n ] [ 0 ] dp[u][1] = \sum dp[son][0] dp[u][1]=dp[son][0]
d p [ u ] [ 0 ] = ∑ m a x ( d p [ s o n ] [ 1 ] , d p [ s o n ] [ 0 ] ) dp[u][0] = \sum max(dp[son][1],dp[son][0]) dp[u][0]=max(dp[son][1],dp[son][0])
D P DP DP思路:首先从根节点 u u u一直向下进行搜索,使用 d f s dfs dfs,从叶节点返回时再使用返回值对状态进行 D P DP DP运算。

代码实现

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 6010;
int n;
int happy[N];
int h[N], e[N], ne[N], idx;
int dp[N][2];
bool has_father[N];

void add(int a, int b)
{
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx++;
}

void dfs(int u)
{
    dp[u][1] = happy[u];
    for(int i = h[u]; i != -1; i = ne[i])
    {
        int son = e[i];
        //先进行更新,在使用更新后的值进行状态转换
        dfs(son);
        dp[u][1] += dp[son][0];
        dp[u][0] += max(dp[son][0],dp[son][1]);
    }
}

int main()
{
    cin >> n;
    
    for(int i = 1; i <= n; i++)
    {
        cin >> happy[i];
    }
    
    memset(h, -1, sizeof h);
    
    for(int i = 0; i < n - 1; i++)
    {
        int a, b;
        cin >> a >> b;
        has_father[a] = true;
        add(b,a);
    }
    
    int root = 1;
    //寻找根节点
    while(has_father[root])
    {
        root++;
    }
    
    dfs(root);
    
    cout << max(dp[root][0],dp[root][1]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值