树形
D
P
DP
DP一般思路,从分析子树入手,最优解通常是和子树根节点
u
u
u相关的函数,状态计算就是寻找根节点和子节点以及权边的递推关系。编写代码,通常需要
d
f
s
dfs
dfs,从根到叶,再从叶到根,在合适的时候
D
P
DP
DP。
没有上司的舞会
U
r
a
l
Ural
Ural大学有
N
N
N名职员,编号为
1
∼
N
1∼N
1∼N。他们的关系就像一棵以校长为根的树,父节点就是子节点的直接上司。每个职员有一个快乐指数,用整数
H
i
Hi
Hi给出,其中
1
≤
i
≤
N
1≤i≤N
1≤i≤N。现在要召开一场周年庆宴会,不过,没有职员愿意和直接上司一起参会。在满足这个条件的前提下,主办方希望邀请一部分职员参会,使得所有参会职员的快乐指数总和最大,求这个最大值。
输入格式
第一行一个整数
N
N
N。接下来
N
N
N行,第
i
i
i行表示
i
i
i号职员的快乐指数
H
i
Hi
Hi。接下来
N
−
1
N−1
N−1行,每行输入一对整数
L
,
K
L,K
L,K,表示
K
K
K是
L
L
L的直接上司。(注意一下,后一个数是前一个数的父节点,不要搞反)。
输出格式
输出最大的快乐指数。
数据范围
1
≤
N
≤
6000
1≤N≤6000
1≤N≤6000,
−
128
≤
H
i
≤
127
−128≤Hi≤127
−128≤Hi≤127
输入样例
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
输出样例
5
解决思路
对于一颗以
u
u
u为根节点的子树,其快乐指数应该是
u
u
u的函数,分为选择
u
u
u和不选
u
u
u。因此对于状态的表示分为两种情况。
d
p
[
u
]
[
1
]
dp[u][1]
dp[u][1]是表示成选择以
u
u
u为根节点的子树并包含
u
u
u的快乐指数。
d
p
[
u
]
[
0
]
dp[u][0]
dp[u][0]是表示成选择以
u
u
u为根节点的子树并不包含
u
u
u的快乐指数。
对于两种状态的计算也分为不同的方式
以
s
o
n
son
son代表
u
u
u的子节点
d
p
[
u
]
[
1
]
=
∑
d
p
[
s
o
n
]
[
0
]
dp[u][1] = \sum dp[son][0]
dp[u][1]=∑dp[son][0]
d
p
[
u
]
[
0
]
=
∑
m
a
x
(
d
p
[
s
o
n
]
[
1
]
,
d
p
[
s
o
n
]
[
0
]
)
dp[u][0] = \sum max(dp[son][1],dp[son][0])
dp[u][0]=∑max(dp[son][1],dp[son][0])
D
P
DP
DP思路:首先从根节点
u
u
u一直向下进行搜索,使用
d
f
s
dfs
dfs,从叶节点返回时再使用返回值对状态进行
D
P
DP
DP运算。
代码实现
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 6010;
int n;
int happy[N];
int h[N], e[N], ne[N], idx;
int dp[N][2];
bool has_father[N];
void add(int a, int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
void dfs(int u)
{
dp[u][1] = happy[u];
for(int i = h[u]; i != -1; i = ne[i])
{
int son = e[i];
//先进行更新,在使用更新后的值进行状态转换
dfs(son);
dp[u][1] += dp[son][0];
dp[u][0] += max(dp[son][0],dp[son][1]);
}
}
int main()
{
cin >> n;
for(int i = 1; i <= n; i++)
{
cin >> happy[i];
}
memset(h, -1, sizeof h);
for(int i = 0; i < n - 1; i++)
{
int a, b;
cin >> a >> b;
has_father[a] = true;
add(b,a);
}
int root = 1;
//寻找根节点
while(has_father[root])
{
root++;
}
dfs(root);
cout << max(dp[root][0],dp[root][1]);
return 0;
}