2022世界杯

下文有代码

2022年,卡塔尔举办的世界杯令人兴奋,世界杯优秀球员不但要有良好的技术和身体,而且更应该具有坚韧不拔的顽强斗志和持续不断的进攻能力,有一种射门叫c罗有一种盘带叫梅西有一种花式叫内马尔有一种速度叫姆巴佩有一种圆月弯刀叫贝克汉姆有一种帅气叫迪巴拉有一种过人叫小罗有一种记录叫莱万有一种脚力叫夫落斯有一种上帝之手叫马拉多纳有一种停球叫马塞洛有一种快乐叫足球,不管是哪一届,体育精神都鼓舞着我们奋勇前进!有人为了成为传奇而奋斗终生;有人却在终生奋斗中,成为传奇。足球很简单,踢简单的足球很难。岁月你别催,该来的我不推,岁月你别催,走远的任要追。花有重开日,人无再少年,一代人的青春,即将落幕。生活就像一场足球,你要懂得变向。有人为了成为传奇而奋斗终生;有人却在终生奋斗中,成为传奇。足球很简单,踢简单的足球很难。一路激情共悦,独抵世界之巅。岁月你别催,该来的我不推,岁月你别催,走远的任要追。花有重开日,人无再少年,一代人的青春,即将落幕。

1.可以帮助广大青少年朋友 减轻学习生活中的压力
2.可以让大家学会什么是团队精神 帮助大家培养团结互助的精神
3.可以帮助大家 学习到 一些好的球员身上 一些好的 品质
4.可以了解不同国家的人文历史 还有其他方面的知识,帮助大家增长见识
5.可以帮助大家提高外语水平
6.可以帮助大家锻炼自己的逻辑思维
缺点: 时间长了点 耽误大家的学习生活工作的时间

卡塔尔世界杯如火如荼举行着,官方用球AL RIHLA中植入的芯片成为一个重要的看点,为视频助理裁判技术(VAR)团队实时提供精确的球数据,以支持快速准确的越位判罚。

近日已有大量文章对这一神秘的芯片进行研究报道,业界不少专家对其背后多个工作机制比较感兴趣。在笔者看来,这是一个集运动传感、定位、通信、边缘计算和应用平台为一体的一整套物联网解决方案

物联网系统如何应用于世界杯官方用球

阿迪达斯在今年7月对外宣布,2022世界杯官方用球将采用新的连接技术,它将通过提供前所未有的数据和信息水平来增强VAR系统,使裁判可以做出更快、更准确的决策。

这一技术由一家名为KINEXON的德国物联网公司提供,通过每秒500次自动提供准确的足球相关信息,如足球的初始速度、运行速度、运动角度等,使比赛裁判和官员能够快速查看现场数据,并将有助于通知越位情况,并协助检测有争议的冲撞,从而最终提高VAR决策过程的质量和速度。KINEXON的这一技术已经通过全球众多职业足球俱乐部和草根足球俱乐部的严格测试,也包括大量盲测,例如在西班牙、德国和英格兰等地俱乐部的帮助下,进行了广泛的盲测,历时数年的时间,最终出现在世界杯的赛场上。

作为物联网技术厂商,KINEXON为足球比赛提供了一整套物联网解决方案。

1.两颗传感器组成的感知系统

具体来说,在每一个比赛用球内都有一个基于KINEXON技术的芯片,据该公司称,这款设备重14克,实际上是由两个同时工作的独立传感器集成而成:

超宽带(UWB)传感器,这一传感器有2个功能,一方面可以跟踪和获取足球精确的位置数据,另一方面可以将数据实时传输至后台系统中。

惯性测量单元(IMU)传感器,这一传感器用来探测足球细微运动。

两颗传感器有效配合,UWB传感器获取位置数据,IMU传感器获得精细的三维运动数据,保证足球主要数据的采集,其中UWB作为最为理想的定位技术,在精度、成本、可靠性、稳定性等方面胜于WiFi、蓝牙等手段,其定位精度最低可以达到0.1米,并可以实现三维定位,适合球场很多争议的场景。基于两个传感器的技术,在球场任何时候,足球被踢、被顶、被扔,甚至轻击,都会以每秒500次的速度获取相关数据。每秒500次的速度,意味着每次数据收集间隔仅为2毫秒,极大的提升了足球状态和轨迹的精确度。

2.高速可靠的数据传输通道

足球的数据从传感器会实时发送到本地系统,这涉及到了数据的通信手段。虽然当前5G可以提供高速可靠的数据传输通道,且通过网络切片能够保障通道畅通,但需要足球内传感器必须搭载专门的5G芯片,这无疑增加了内部芯片的重量和体积。而UWB此时就发挥了重要的作用,根据应用场景的不同,UWB可以实现10-200米不等的传输距离,能够实现球场范围内的数据传输。

根据KINEXON的足球跟踪解决方案所述,该方案首先会在球场周边安装12-24个UWB基站用于收集数据,并通过有线方式实现基站数据回传。足球传感器收集的高精度数据,会通过内置的UWB芯片以每秒500次的频率发送给基站,由基站进行回传。

当一个足球在比赛过程中飞出界外,另一个新球被扔进来代替它时,KINEXON的后端系统会自动切换到新球的数据输入,无需人工干预。

3.实时处理的边缘系统

由于数据传输具有一定的时延,足球的实时数据分析需要通过边缘计算节点进行处理,UWB基站收集的数据会及时传输至球场附近的处理器中,边缘处理器会在20毫秒内计算出各类参数,例如足球飞行速度、传球距离,并识别出球员的行为,如射门、过人、控球等。

当然,球场的各类数据和球员行为不仅仅通过足球传感器的数据来确定,还搭配了全场的光学跟踪相机,12个鹰眼摄像机安装在体育场周围,每秒钟跟踪足球本身和每个球员50次,可以追踪身体的29个独立点。当这两个数据源结合起来时,越位决策不仅高度准确,而且比过去快得多——这是国际足联在本届世界杯期间推崇的新技术。

4.数据分析平台为多方面应用提供参考

通过KINEXON传感器获取的数据,KINEXON提供专门的分析平台,在比赛现场提供了更为精准和快速的裁判判罚辅助。除此之外,这些数据和分析平台也能够为多方提供创新的输入,包括教练教学参考、媒体及时报道以及观众观赛体验。

以媒体报道为例,平台为媒体开放传感器收集的数据,媒体借助这些数据能够给观众带来及时的数据分析,让观众能够从多个角度了解比赛进程。此外,这些数据为未来制作成VR、AR视频提供输入。

本次世界杯并非KINEXON公司在体育领域的首秀,实际上这家公司凭借物联网技术,仅用两年的时间,便一举改变了NBA在可穿戴设备领域的版图。早在2016年,KINEXON通过与费城76人队的合作首次进入了NBA的市场,通过内置的传感器芯片,KINEXON推出的iball智能篮球可以追踪篮球的运动轨迹和速度,并实时反馈数据;而搭载着KINEXON传感器的球衣,也能帮助教练们在训练或比赛中实时监控运动员们的状态。在不被大多数人看好的情况下,这家公司仅用两年便迅速站稳脚跟,成为了NBA最大的可穿戴设备供应商,NBA官方数据显示,目前联盟中的30支球队里,有14支队伍使用着KINEXON的设备。

实际上,KINEXON提供的物联网解决方案不仅仅在体育领域,其他行业尤其是工业领域也广泛受到认可。今年5月,KINEXON获得了1.3亿美元的A轮融资,其中宝马和德国电信也参与了投资。在相关报道中,多家媒体提到,KINEXON针对工业领域提供的实时定位和实时分析系统,使宝马、大陆、西门子和空客等公司提高生产力以及可持续性,并降低制造和物流的成本。

宝马高管在评论其投资KINEXON时提到,宝马集团的汽车生产很像顶级运动,因为它是关于高性能的过程。KINEXON实时定位平台构成了我们生产全面数字化的支柱,这是一个创新的操作系统,它使我们高度复杂的生产过程透明化,并进一步提高了生产效率。德国电信物联网首席执行官也提到,通过与KINEXON建立这种伙伴关系,我们为制造业客户提供实时定位的自动化解决方案,德国电信的5G能力也为我们两家公司的共同开发机会铺平了道路。

《测试球赛结果》

from random import random
def printIntro():
    print("这个程序模拟两个选手A和B的某种竞技比赛")
    print("程序运行需要A和B的能力值(以0到1之间的小数表示)")
def getInputs():
    a = eval(input("请输入选手A的能力值(0-1): "))
    b = eval(input("请输入选手B的能力值(0-1): "))
    n = eval(input("模拟比赛的场次: "))
    return a, b, n
def simNGames(n, probA, probB):
    winsA, winsB = 0, 0
    for i in range(n):
        scoreA, scoreB = simOneGame(probA, probB)
        if scoreA > scoreB:
            winsA += 1
        else:
            winsB += 1
    return winsA, winsB
def gameOver(a,b):
    return a==15 or b==15
def simOneGame(probA, probB):
    scoreA, scoreB = 0, 0
    serving = "A"
    while not gameOver(scoreA, scoreB):
        if serving == "A":
            if random() < probA:
                scoreA += 1
            else:
                serving="B"
        else:
            if random() < probB:
                scoreB += 1
            else:
                serving="A"
    return scoreA, scoreB
def onegamewin(pA,pB):
    if scoreA == 11 and scoreB <10:
        scoreA = 1
        scoreB = 0
    elif scoreB == 11 and scoreA <10:
        scoreB = 1
        scoreA = 0
    while(scoreA >10 and scoreB >10):
        if scoreA - scoreB == 2:
            scoreA = 1
            scoreB = 0
        elif scoreB - scoreA == 2:
            scoreA = 0
            scoreB = 1
    return scoreA, scoreB
def printSummary(winsA, winsB):
    n = winsA + winsB
    print("竞技分析开始,共模拟{}场比赛".format(n))
    print("选手A获胜{}场比赛,占比{:0.1%}".format(winsA, winsA/n))
    print("选手B获胜{}场比赛,占比{:0.1%}".format(winsB, winsB/n))
def winner(winsA,winsB,n):
    if winsA/n > 4/7:
        print("选手A获胜")
    elif winsB/n >4/7:
        print("选手B获胜")
def main():
    try:
        printIntro()
    except:
        print('Error')
   
    try:
        probA, probB, n = getInputs()
    except:
        print('Error')
    
    try:
        pA,pB = simOneGame(probA,probB)
    except:
        print('Error')
     
    try:
        winsA, winsB = simNGames(n, probA, probB)
    except:
        print('Error')
    
    try:
        printSummary(winsA, winsB)
    except:
        print('Error')
     
    try:
        winner(winsA,winsB,n)
    except:
        print('Error')
     
 
main()

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
为了使用Apriori算法分析2022世界杯的数据,我们需要首先将数据转化成适合算法的格式,然后使用Python中的Apriori算法来发现频繁项集和关联规则。 假设我们已经收集了2022世界杯的比赛数据,包括比赛结果、进球数、球队等信息。我们可以将每场比赛的数据表示成一个项集,例如: Match1 = {Brazil, Argentina, Win} Match2 = {France, Spain, Draw} Match3 = {Germany, Mexico, Germany Win, 2-0} 其中,Match1表示巴西队与阿根廷队的比赛结果是巴西队获胜,Match2表示法国队与西班牙队的比赛结果是平局,Match3表示德国队与墨西哥队的比赛结果是德国队获胜,且进球数为2。 接下来,我们可以使用Python中的Apriori算法来发现频繁项集和关联规则。以下是使用Python实现Apriori算法的示例代码: ```python from mlxtend.frequent_patterns import apriori from mlxtend.frequent_patterns import association_rules # 数据准备 data = [['Brazil', 'Argentina', 'Win'], ['France', 'Spain', 'Draw'], ['Germany', 'Mexico', 'Germany Win', '2-0'], ...] # 将数据转化为0/1矩阵格式 def encode_units(x): if x: return 1 else: return 0 data = pd.DataFrame(data) encoded_data = data.applymap(encode_units) # Apriori算法 frequent_itemsets = apriori(encoded_data, min_support=0.5, use_colnames=True) # 关联规则 rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1) # 输出频繁项集和关联规则 print(frequent_itemsets) print(rules) ``` 以上代码中,我们首先将数据转化为0/1矩阵格式,然后使用Apriori算法发现频繁项集和关联规则。在这里,我们使用了min_support参数来设置频繁项集的最小支持度,使用metric参数来设置关联规则的评价指标,这里我们使用了lift指标,它表示规则的可信度与项之间的相关性之比,值越大表示规则越有用。 通过这些频繁项集和关联规则,我们可以发现一些有趣的趋势和规律,例如哪些球队之间的胜率更高,哪些球队之间的比赛更容易出现进球等等。这些分析结果可以帮助我们更好地理解和预测2022世界杯的结果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值