一、简介
MatterGen 是一种用于跨周期表设计无机材料的生成模型,可以微调以引导生成满足广泛性能约束条件。
MatterGen 的基础模型在生成新颖、稳定且多样化的材料方面已达到领先水平(如图所示)。该模型利用来自 Materials Project(opens in new tab)(MP)和 Alexandria(opens in new tab)(Alex)数据库的 608,000 种稳定材料进行训练。其性能的提升得益于架构的优化以及高质量、大规模的训练数据。
注:MatterGen 与其他方法在生成稳定、新颖和独特结构的材料方面的性能比较。每种方法的训练数据集在括号中标出。紫色表示仅由于 MatterGen 架构带来的性能提升,青色则表示由更大的数据集带来的性能提升。
提供 MatterGen 的模型:
mattergen_base
: 无条件基础模型chemical_system
: 化学系统条件微调模型space_group
: 基于空间群的微调模型dft_mag_density
: 基于 DFT 磁密度的微调模型dft_band_gap
: 基于 DFT 带隙的微调模型ml_bulk_modulus
: 在机器学习预测器提供的体模量上进行微调的模型dft_mag_density_hhi_score
: 在 DFT 和 HHI 分数的基础上联合微调的模型chemical_system_energy_above_hull
: 在 DFT 的化学体系基础上联合微调的模型
二、环境部署
基础环境要求:
环境名称 | 版本信息 1 |
---|---|
Ubuntu | 22.04.5 LTS |
Cuda | V11 |
Python | 3.10 |
uv | 0.7.3 |
1. 更新基础软件包
查看系统版本信息
# 查看系统版本信息,包括ID(如ubuntu、centos等)、版本号、名称、版本号ID等
cat /etc/os-release
配置 apt 国内源
# 更新软件包列表
apt-get update
这个命令用于更新本地软件包索引。它会从所有配置的源中检索最新的软件包列表信息,但不会安装或升级任何软件包。这是安装新软件包或进行软件包升级之前的推荐步骤,因为它确保了您获取的是最新版本的软件包。
# 安装 Vim 编辑器
apt-get install -y vim
这个命令用于安装 Vim 文本编辑器。-y
选项表示自动回答所有的提示为“是”,这样在安装过程中就不需要手动确认。Vim 是一个非常强大的文本编辑器,广泛用于编程和配置文件的编辑。
为了安全起见,先备份当前的 sources.list
文件之后,再进行修改:
# 备份现有的软件源列表
cp /etc/apt/sources.list /etc/apt/sources.list.bak
这个命令将当前的 sources.list
文件复制为一个名为 sources.list.bak
的备份文件。这是一个好习惯,因为编辑 sources.list
文件时可能会出错,导致无法安装或更新软件包。有了备份,如果出现问题,您可以轻松地恢复原始的文件。
# 编辑软件源列表文件
vim /etc/apt/sources.list
这个命令使用 Vim 编辑器打开 sources.list
文件,以便您可以编辑它。这个文件包含了 APT(Advanced Package Tool)用于安装和更新软件包的软件源列表。通过编辑这个文件,您可以添加新的软件源、更改现有软件源的优先级或禁用某些软件源。
在 Vim 中,您可以使用方向键来移动光标,i
键进入插入模式(可以开始编辑文本),Esc
键退出插入模式,:wq
命令保存更改并退出 Vim,或 :q!
命令不保存更改并退出 Vim。
编辑 sources.list
文件时,请确保您了解自己在做什么,特别是如果您正在添加新的软件源。错误的源可能会导致软件包安装失败或系统安全问题。如果您不确定,最好先搜索并找到可靠的源信息,或者咨询有经验的 Linux 用户。
使用 Vim 编辑器打开 sources.list
文件,复制以下代码替换 sources.list
里面的全部代码,配置 apt 国内阿里源。
deb http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
安装常用软件和工具
# 更新源列表,输入以下命令:
apt-get update
# 更新系统软件包,输入以下命令:
apt-get upgrade
# 安装常用软件和工具,输入以下命令:
apt-get -y install vim wget git git-lfs unzip lsof net-tools gcc cmake build-essential
出现以下页面,说明国内apt源已替换成功,且能正常安装apt软件和工具
2. 安装 NVIDIA CUDA Toolkit (按需安装对应版本)
- 下载 CUDA Keyring :
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb
这个命令用于下载 CUDA 的 GPG 密钥环,它用于验证 CUDA 软件包的签名。这是确保软件包安全性的一个重要步骤。
- 安装 CUDA Keyring :
dpkg -i cuda-keyring_1.0-1_all.deb
使用 dpkg
安装下载的密钥环。这是必要的,以便 apt
能够验证从 NVIDIA 仓库下载的软件包的签名。
- 删除旧的 apt 密钥(如果必要) :
apt-key del 7fa2af80
这一步可能不是必需的,除非您知道 7fa2af80
是与 CUDA 相关的旧密钥,并且您想从系统中删除它以避免混淆。通常情况下,如果您只是安装 CUDA 并使用 NVIDIA 提供的最新密钥环,这一步可以跳过。
- 更新 apt 包列表 :
apt-get update
更新 apt 的软件包列表,以便包括刚刚通过 cuda-keyring
添加的 NVIDIA 仓库中的软件包。
- 安装 CUDA Toolkit :
apt-get -y install cuda-toolkit-12-1
出现以下页面,说明 NVIDIA CUDA Toolkit 12.1 安装成功
注意:这里可能有一个问题。NVIDIA 官方 Ubuntu 仓库中可能不包含直接名为 cuda-toolkit-12-1
的包。通常,您会安装一个名为 cuda
或 cuda-12-1
的元包,它会作为依赖项拉入 CUDA Toolkit 的所有组件。请检查 NVIDIA 的官方文档或仓库,以确认正确的包名。
如果您正在寻找安装特定版本的 CUDA Toolkit,您可能需要安装类似 cuda-12-1
的包(如果可用),或者从 NVIDIA 的官方网站下载 CUDA Toolkit 的 .run
安装程序进行手动安装。
请确保您查看 NVIDIA 的官方文档或 Ubuntu 的 NVIDIA CUDA 仓库以获取最准确的包名和安装指令。
- 出现以上情况,需要配置 NVIDIA CUDA Toolkit 12.1 系统环境变量
编辑 ~/.bashrc 文件
# 编辑 ~/.bashrc 文件
vim ~/.bashrc
插入以下环境变量
# 插入以下环境变量
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
激活 ~/.bashrc 文件
# 激活 ~/.bashrc 文件
source ~/.bashrc
查看cuda系统环境变量
which nvcc
nvcc -V
3. 安装 Miniconda
- 下载 Miniconda 安装脚本 :
- 使用
wget
命令从 Anaconda 的官方仓库下载 Miniconda 的安装脚本。Miniconda 是一个更小的 Anaconda 发行版,包含了 Anaconda 的核心组件,用于安装和管理 Python 包。
- 使用
- 运行 Miniconda 安装脚本 :
- 使用
bash
命令运行下载的 Miniconda 安装脚本。这将启动 Miniconda 的安装过程。
- 使用
# 下载 Miniconda 安装脚本
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
# 运行 Miniconda 安装脚本
bash Miniconda3-latest-Linux-x86_64.sh
# 初次安装需要激活 base 环境
source ~/.bashrc
按下回车键(enter)
输入yes
输入yes
安装成功如下图所示
pip配置清华源加速
# 编辑 /etc/pip.conf 文件
vim /etc/pip.conf
加入以下代码
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
注意事项:
- 请确保您的系统是 Linux x86_64 架构,因为下载的 Miniconda 版本是为该架构设计的。
- 在运行安装脚本之前,您可能需要使用
chmod +x Miniconda3-latest-Linux-x86_64.sh
命令给予脚本执行权限。 - 安装过程中,您将被提示是否同意许可协议,以及是否将 Miniconda 初始化。通常选择 "yes" 以完成安装和初始化。
- 安装完成后,您可以使用
conda
命令来管理 Python 环境和包。 - 如果链接无法访问或解析失败,可能是因为网络问题或链接本身的问题。请检查网络连接,并确保链接是最新的和有效的。如果问题依旧,请访问 Anaconda 的官方网站获取最新的下载链接。
4. 设置中文环境(可选)
在终端出现中文乱码时,需要设置中文环境
apt update && apt install sudo -y
apt update && apt install -y curl
vim sj_zh_CN_UTF_8.sh
chmod +x sj_zh_CN_UTF_8.sh
./sj_zh_CN_UTF_8.sh
source ~/.bashrc
sj_zh_CN_UTF_8.sh
内容:
#!/bin/bash
# 更新系统软件包
sudo apt-get update
# 安装所需工具
sudo apt-get install -y sudo locales vim
# 编辑并生成语言环境
echo "zh_CN.UTF-8 UTF-8" | sudo tee -a /etc/locale.gen
echo "en_US.UTF-8 UTF-8" | sudo tee -a /etc/locale.gen
# 生成语言环境
sudo locale-gen
# 设置默认语言环境为中文
sudo update-locale LANG=zh_CN.UTF-8
# 更新~/.bashrc以确保LANG环境变量持久生效
echo 'export LANG=zh_CN.UTF-8' >> ~/.bashrc
# 使修改立即生效
source ~/.bashrc
# 输出当前语言环境
locale
三、MatterGen部署
1. 安装
从github 克隆源码,也可以使用手动下载并上传。
git clone https://github.com/microsoft/mattergen.git
官方推荐使用 UV
构建环境,在 python
环境下使用 pip
安装 UV
cd mattergen
pip install uv
uv venv .venv --python 3.10
source .venv/bin/activate
uv pip install -e . -i http://mirrors.aliyun.com/pypi/simple
在激活的 uv
环境下,运行 mmattergen-generate --help
可以查看命令的说明
2. 下载模型
从它的镜像网址:HF-Mirror 下载,huggingface-cli
是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。
这里演示下载它的所有模型。
pip install -U huggingface_hub
export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download --resume-download microsoft/mattergen --local-dir checkpoints
3. 测试
编写一个 test.sh
测试它是否正常工作,MODEL_NAME
指定模型的位置,这里使用它的基础模型;RESULTS_PATH
指定生成结果位置
然后执行: bash test.sh
export MODEL_NAME=/mattergen/checkpoints/checkpoints/mattergen_base/
export RESULTS_PATH=results/ # Samples will be written to this directory
# generate batch_size * num_batches samples
mattergen-generate $RESULTS_PATH --model_path=$MODEL_NAME --batch_size=16 --num_batches 1
出现这样的结果代表运行完成,生成的三个文件分别代表:
enerated_crystals_cif.zip
:一个 ZIP 文件,其中包含每个生成的结构的一个 .cif 文件。generated_crystals.extxyz
:一个包含各个生成结构的文件的帧。generated_trajectories.zip
:一个包含每个生成结构的.extxyz
文件的 ZIP 文件,其中包含每个独立结构的完整去噪轨迹。
4. 创建webui
为了方便使用,创建 app.py
执行: python app.py
import gradio as gr
import subprocess
import os
# 新增模型扫描函数
def scan_models():
checkpoint_dir = r"/mattergen/checkpoints/checkpoints"
try:
models = [d for d in os.listdir(checkpoint_dir)
if os.path.isdir(os.path.join(checkpoint_dir, d))]
return models
except FileNotFoundError:
os.makedirs(checkpoint_dir, exist_ok=True)
return []
def scan_result_files(results_path):
"""扫描结果目录中的文件"""
try:
files = [f for f in os.listdir(results_path)
if os.path.isfile(os.path.join(results_path, f))]
return [os.path.join(results_path, f) for f in files]
except FileNotFoundError:
return []
with gr.Blocks() as demo:
gr.Markdown("""
<div style="padding: 20px; background: #f8f9fa; border-radius: 8px;">
<h1 style="margin: 0; color: #2d3436;">MatterGen 分子生成工具</h1>
<p style="margin: 10px 0; color: #636e72;">跨周期表设计无机材料的生成模型,支持微调生成满足复杂约束条件的分子结构</p>
<div style="margin-top: 15px;">
<a href="https://github.com/microsoft/mattergen/tree/main" target="_blank" style="margin-right: 20px; color: #0984e3; text-decoration: none;">
<i class="fa fa-github"></i> GitHub 项目
</a>
<a href="https://www.suanjiayun.com/" target="_blank" style="color: #00b894; text-decoration: none;">
<i class="fa fa-cloud"></i> 算家云平台
</a>
</div>
</div>
""")
with gr.Row():
model_name = gr.Dropdown(
label="选择模型",
choices=scan_models(),
value="mattergen_base" if "mattergen_base" in scan_models() else None
)
results_path = gr.Textbox(label="结果路径", value="results/")
with gr.Row():
batch_size = gr.Number(label="Batch Size", value=16, precision=0)
num_batches = gr.Number(label="Num Batches", value=1, precision=0)
# 新增自定义参数输入框
with gr.Row():
custom_args = gr.Textbox(
label="自定义参数",
placeholder="例如:--properties_to_condition_on=\"{'dft_mag_density': 0.15}\" --diffusion_guidance_factor=2.0",
lines=2
)
# 新增参数说明
gr.Markdown("""
**参数说明**
`--diffusion-guidance-factor` (γ参数):
▸ `=0` ➔ 无条件生成
▸ `>0` ➔ 值越高生成样本越符合输入属性,但会降低多样性和真实性
""")
# 新增预览按钮和命令显示框
preview_btn = gr.Button("预览命令")
command_preview = gr.Textbox(label="生成命令", interactive=False)
run_btn = gr.Button("开始生成")
output = gr.Textbox(label="执行结果", interactive=False)
# 新增状态存储生成的命令
generated_command = gr.State()
def generate_command(model_name, results_path, batch_size, num_batches, custom_args):
full_model_path = os.path.join(r"/mattergen/checkpoints/checkpoints/", model_name)
base_cmd = f"mattergen-generate {results_path} --model_path={full_model_path} --batch_size={int(batch_size)} --num_batches={int(num_batches)}"
# 添加自定义参数
if custom_args.strip():
base_cmd += f" {custom_args.strip()}"
return base_cmd, base_cmd
preview_btn.click(
fn=generate_command,
inputs=[model_name, results_path, batch_size, num_batches, custom_args],
outputs=[command_preview, generated_command]
)
# 新增文件列表组件
# 修改文件列表组件为动态路径
# 在文件列表组件前添加刷新按钮
refresh_btn = gr.Button("🔄 刷新文件列表")
file_list = gr.Files(
label="生成结果文件",
value=lambda: scan_result_files(results_path.value)
)
# 添加刷新按钮点击事件
refresh_btn.click(
fn=lambda x: scan_result_files(x),
inputs=results_path,
outputs=file_list
)
# 修改执行函数以更新文件列表
def execute_command(cmd, results_path): # 确保接收明确的路径参数
try:
result = subprocess.run(
cmd,
shell=True,
capture_output=True,
text=True,
check=True
)
return f"命令执行成功!\n\n输出:\n{result.stdout}", scan_result_files(results_path)
except subprocess.CalledProcessError as e:
return f"执行出错:\n{e.stderr}", scan_result_files(results_path)
# 修改按钮点击事件绑定
run_btn.click(
fn=execute_command,
inputs=[generated_command, results_path], # 添加results_path作为输入
outputs=[output, file_list]
)
# 增强路径校验
def scan_result_files(results_path):
"""扫描结果目录中的文件"""
if not results_path: # 新增空值检查
return []
try:
files = [f for f in os.listdir(results_path)
if os.path.isfile(os.path.join(results_path, f))]
return [os.path.join(results_path, f) for f in files]
except FileNotFoundError:
return []
# 添加路径变更监听
results_path.change(
fn=lambda x: scan_result_files(x),
inputs=results_path,
outputs=file_list
)
if __name__ == "__main__":
demo.launch(pwa=True, server_name="0.0.0.0", server_port=8080)