MatterGen本地部署教程:逆向材料设计新范式——扩散模型驱动,一键生成未来材料!

一、简介

MatterGen 是一种用于跨周期表设计无机材料的生成模型,可以微调以引导生成满足广泛性能约束条件。

MatterGen 的基础模型在生成新颖、稳定且多样化的材料方面已达到领先水平(如图所示)。该模型利用来自 Materials Project(opens in new tab)(MP)和 Alexandria(opens in new tab)(Alex)数据库的 608,000 种稳定材料进行训练。其性能的提升得益于架构的优化以及高质量、大规模的训练数据。

image.png

注:MatterGen 与其他方法在生成稳定、新颖和独特结构的材料方面的性能比较。每种方法的训练数据集在括号中标出。紫色表示仅由于 MatterGen 架构带来的性能提升,青色则表示由更大的数据集带来的性能提升。

提供 MatterGen 的模型:

  • mattergen_base: 无条件基础模型
  • chemical_system: 化学系统条件微调模型
  • space_group: 基于空间群的微调模型
  • dft_mag_density: 基于 DFT 磁密度的微调模型
  • dft_band_gap: 基于 DFT 带隙的微调模型
  • ml_bulk_modulus: 在机器学习预测器提供的体模量上进行微调的模型
  • dft_mag_density_hhi_score: 在 DFT 和 HHI 分数的基础上联合微调的模型
  • chemical_system_energy_above_hull: 在 DFT 的化学体系基础上联合微调的模型

二、环境部署

基础环境要求:

环境名称版本信息 1
Ubuntu22.04.5 LTS
CudaV11
Python3.10
uv0.7.3

1. 更新基础软件包

查看系统版本信息

# 查看系统版本信息,包括ID(如ubuntu、centos等)、版本号、名称、版本号ID等
cat /etc/os-release

1726627581255_image.png

配置 apt 国内源

# 更新软件包列表
apt-get update

这个命令用于更新本地软件包索引。它会从所有配置的源中检索最新的软件包列表信息,但不会安装或升级任何软件包。这是安装新软件包或进行软件包升级之前的推荐步骤,因为它确保了您获取的是最新版本的软件包。

# 安装 Vim 编辑器
apt-get install -y vim

这个命令用于安装 Vim 文本编辑器。-y 选项表示自动回答所有的提示为“是”,这样在安装过程中就不需要手动确认。Vim 是一个非常强大的文本编辑器,广泛用于编程和配置文件的编辑。

为了安全起见,先备份当前的 sources.list 文件之后,再进行修改:

# 备份现有的软件源列表
cp /etc/apt/sources.list /etc/apt/sources.list.bak

这个命令将当前的 sources.list 文件复制为一个名为 sources.list.bak 的备份文件。这是一个好习惯,因为编辑 sources.list 文件时可能会出错,导致无法安装或更新软件包。有了备份,如果出现问题,您可以轻松地恢复原始的文件。

# 编辑软件源列表文件
vim /etc/apt/sources.list

这个命令使用 Vim 编辑器打开 sources.list 文件,以便您可以编辑它。这个文件包含了 APT(Advanced Package Tool)用于安装和更新软件包的软件源列表。通过编辑这个文件,您可以添加新的软件源、更改现有软件源的优先级或禁用某些软件源。

在 Vim 中,您可以使用方向键来移动光标,i 键进入插入模式(可以开始编辑文本),Esc 键退出插入模式,:wq 命令保存更改并退出 Vim,或 :q! 命令不保存更改并退出 Vim。

编辑 sources.list 文件时,请确保您了解自己在做什么,特别是如果您正在添加新的软件源。错误的源可能会导致软件包安装失败或系统安全问题。如果您不确定,最好先搜索并找到可靠的源信息,或者咨询有经验的 Linux 用户。

1726627632814_image.png

使用 Vim 编辑器打开 sources.list 文件,复制以下代码替换 sources.list里面的全部代码,配置 apt 国内阿里源。

deb http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse

1726627649314_image.png

安装常用软件和工具

# 更新源列表,输入以下命令:
apt-get update

# 更新系统软件包,输入以下命令:
apt-get upgrade

# 安装常用软件和工具,输入以下命令:
apt-get -y install vim wget git git-lfs unzip lsof net-tools gcc cmake build-essential

出现以下页面,说明国内apt源已替换成功,且能正常安装apt软件和工具

1726627670779_image.png

2. 安装 NVIDIA CUDA Toolkit (按需安装对应版本)

  • 下载 CUDA Keyring :
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb

这个命令用于下载 CUDA 的 GPG 密钥环,它用于验证 CUDA 软件包的签名。这是确保软件包安全性的一个重要步骤。

  • 安装 CUDA Keyring :
dpkg -i cuda-keyring_1.0-1_all.deb

使用 dpkg 安装下载的密钥环。这是必要的,以便 apt 能够验证从 NVIDIA 仓库下载的软件包的签名。

1726627689852_image.png

  • 删除旧的 apt 密钥(如果必要) :
apt-key del 7fa2af80

这一步可能不是必需的,除非您知道 7fa2af80 是与 CUDA 相关的旧密钥,并且您想从系统中删除它以避免混淆。通常情况下,如果您只是安装 CUDA 并使用 NVIDIA 提供的最新密钥环,这一步可以跳过。

  • 更新 apt 包列表 :
apt-get update

更新 apt 的软件包列表,以便包括刚刚通过 cuda-keyring 添加的 NVIDIA 仓库中的软件包。

  • 安装 CUDA Toolkit :
apt-get -y install cuda-toolkit-12-1

1726627724243_image.png

出现以下页面,说明 NVIDIA CUDA Toolkit 12.1 安装成功

1726627736357_image.png

注意:这里可能有一个问题。NVIDIA 官方 Ubuntu 仓库中可能不包含直接名为 cuda-toolkit-12-1 的包。通常,您会安装一个名为 cuda 或 cuda-12-1 的元包,它会作为依赖项拉入 CUDA Toolkit 的所有组件。请检查 NVIDIA 的官方文档或仓库,以确认正确的包名。

如果您正在寻找安装特定版本的 CUDA Toolkit,您可能需要安装类似 cuda-12-1 的包(如果可用),或者从 NVIDIA 的官方网站下载 CUDA Toolkit 的 .run 安装程序进行手动安装。

请确保您查看 NVIDIA 的官方文档或 Ubuntu 的 NVIDIA CUDA 仓库以获取最准确的包名和安装指令。

1726627761880_image.png

  • 出现以上情况,需要配置 NVIDIA CUDA Toolkit 12.1 系统环境变量

编辑 ~/.bashrc 文件

# 编辑 ~/.bashrc 文件
vim ~/.bashrc

插入以下环境变量

# 插入以下环境变量
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

1726627785017_image.png

激活 ~/.bashrc 文件

# 激活 ~/.bashrc 文件
source ~/.bashrc

查看cuda系统环境变量

which nvcc
nvcc -V

1726627797367_image.png

3. 安装 Miniconda

  • 下载 Miniconda 安装脚本 :
    • 使用 wget 命令从 Anaconda 的官方仓库下载 Miniconda 的安装脚本。Miniconda 是一个更小的 Anaconda 发行版,包含了 Anaconda 的核心组件,用于安装和管理 Python 包。
  • 运行 Miniconda 安装脚本 :
    • 使用 bash 命令运行下载的 Miniconda 安装脚本。这将启动 Miniconda 的安装过程。
# 下载 Miniconda 安装脚本
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

# 运行 Miniconda 安装脚本
bash Miniconda3-latest-Linux-x86_64.sh

# 初次安装需要激活 base 环境
source ~/.bashrc

按下回车键(enter)

1726627823409_image.png

输入yes

1726627835177_image.png

输入yes

1726627844297_image.png

安装成功如下图所示

1726627852297_image.png

pip配置清华源加速

# 编辑 /etc/pip.conf 文件
vim  /etc/pip.conf

加入以下代码

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple

注意事项:

  • 请确保您的系统是 Linux x86_64 架构,因为下载的 Miniconda 版本是为该架构设计的。
  • 在运行安装脚本之前,您可能需要使用 chmod +x Miniconda3-latest-Linux-x86_64.sh 命令给予脚本执行权限。
  • 安装过程中,您将被提示是否同意许可协议,以及是否将 Miniconda 初始化。通常选择 "yes" 以完成安装和初始化。
  • 安装完成后,您可以使用 conda 命令来管理 Python 环境和包。
  • 如果链接无法访问或解析失败,可能是因为网络问题或链接本身的问题。请检查网络连接,并确保链接是最新的和有效的。如果问题依旧,请访问 Anaconda 的官方网站获取最新的下载链接。

4. 设置中文环境(可选)

在终端出现中文乱码时,需要设置中文环境


apt update && apt install sudo -y
apt update && apt install -y curl

vim sj_zh_CN_UTF_8.sh
chmod +x sj_zh_CN_UTF_8.sh
./sj_zh_CN_UTF_8.sh
source ~/.bashrc

sj_zh_CN_UTF_8.sh 内容:

#!/bin/bash

# 更新系统软件包
sudo apt-get update

# 安装所需工具
sudo apt-get install -y sudo locales vim

# 编辑并生成语言环境
echo "zh_CN.UTF-8 UTF-8" | sudo tee -a /etc/locale.gen
echo "en_US.UTF-8 UTF-8" | sudo tee -a /etc/locale.gen

# 生成语言环境
sudo locale-gen

# 设置默认语言环境为中文
sudo update-locale LANG=zh_CN.UTF-8

# 更新~/.bashrc以确保LANG环境变量持久生效
echo 'export LANG=zh_CN.UTF-8' >> ~/.bashrc

# 使修改立即生效
source ~/.bashrc

# 输出当前语言环境
locale

三、MatterGen部署

1. 安装

github 克隆源码,也可以使用手动下载并上传。

git clone https://github.com/microsoft/mattergen.git

官方推荐使用 UV 构建环境,在 python 环境下使用 pip 安装 UV

cd mattergen
pip install uv
uv venv .venv --python 3.10 
source .venv/bin/activate
uv pip install -e . -i http://mirrors.aliyun.com/pypi/simple

在激活的 uv 环境下,运行 mmattergen-generate --help 可以查看命令的说明

image.png

2. 下载模型

从它的镜像网址:HF-Mirror 下载,huggingface-cli 是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。

这里演示下载它的所有模型。

pip install -U huggingface_hub
export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download --resume-download microsoft/mattergen --local-dir checkpoints

3. 测试

编写一个 test.sh 测试它是否正常工作,MODEL_NAME 指定模型的位置,这里使用它的基础模型;RESULTS_PATH 指定生成结果位置

然后执行: bash test.sh

export MODEL_NAME=/mattergen/checkpoints/checkpoints/mattergen_base/
export RESULTS_PATH=results/  # Samples will be written to this directory

# generate batch_size * num_batches samples
mattergen-generate $RESULTS_PATH --model_path=$MODEL_NAME --batch_size=16 --num_batches 1

image.png

出现这样的结果代表运行完成,生成的三个文件分别代表:

  • enerated_crystals_cif.zip:一个 ZIP 文件,其中包含每个生成的结构的一个 .cif 文件。
  • generated_crystals.extxyz:一个包含各个生成结构的文件的帧。
  • generated_trajectories.zip:一个包含每个生成结构的 .extxyz 文件的 ZIP 文件,其中包含每个独立结构的完整去噪轨迹。

4. 创建webui

为了方便使用,创建 app.py

执行: python app.py

image.png

import gradio as gr
import subprocess
import os

# 新增模型扫描函数
def scan_models():
    checkpoint_dir = r"/mattergen/checkpoints/checkpoints"
    try:
        models = [d for d in os.listdir(checkpoint_dir) 
                if os.path.isdir(os.path.join(checkpoint_dir, d))]
        return models
    except FileNotFoundError:
        os.makedirs(checkpoint_dir, exist_ok=True)
        return []

def scan_result_files(results_path):
    """扫描结果目录中的文件"""
    try:
        files = [f for f in os.listdir(results_path) 
                if os.path.isfile(os.path.join(results_path, f))]
        return [os.path.join(results_path, f) for f in files]
    except FileNotFoundError:
        return []

with gr.Blocks() as demo:
    gr.Markdown("""
    <div style="padding: 20px; background: #f8f9fa; border-radius: 8px;">
        <h1 style="margin: 0; color: #2d3436;">MatterGen 分子生成工具</h1>
        <p style="margin: 10px 0; color: #636e72;">跨周期表设计无机材料的生成模型,支持微调生成满足复杂约束条件的分子结构</p>
        <div style="margin-top: 15px;">
            <a href="https://github.com/microsoft/mattergen/tree/main" target="_blank" style="margin-right: 20px; color: #0984e3; text-decoration: none;">
                <i class="fa fa-github"></i> GitHub 项目
            </a>
            <a href="https://www.suanjiayun.com/" target="_blank" style="color: #00b894; text-decoration: none;">
                <i class="fa fa-cloud"></i> 算家云平台
            </a>
        </div>
    </div>
    """)
  
    with gr.Row():
        model_name = gr.Dropdown(
            label="选择模型", 
            choices=scan_models(),
            value="mattergen_base" if "mattergen_base" in scan_models() else None
        )
        results_path = gr.Textbox(label="结果路径", value="results/")
  
    with gr.Row():
        batch_size = gr.Number(label="Batch Size", value=16, precision=0)
        num_batches = gr.Number(label="Num Batches", value=1, precision=0)
  
    # 新增自定义参数输入框
    with gr.Row():
        custom_args = gr.Textbox(
            label="自定义参数",
            placeholder="例如:--properties_to_condition_on=\"{'dft_mag_density': 0.15}\" --diffusion_guidance_factor=2.0",
            lines=2
        )
  
    # 新增参数说明
    gr.Markdown("""
    **参数说明**  
    `--diffusion-guidance-factor` (γ参数):  
    ▸ `=0` ➔ 无条件生成  
    ▸ `>0` ➔ 值越高生成样本越符合输入属性,但会降低多样性和真实性  
    """)
  
    # 新增预览按钮和命令显示框
    preview_btn = gr.Button("预览命令")
    command_preview = gr.Textbox(label="生成命令", interactive=False)
    run_btn = gr.Button("开始生成")
    output = gr.Textbox(label="执行结果", interactive=False)
  
    # 新增状态存储生成的命令
    generated_command = gr.State()
  
    def generate_command(model_name, results_path, batch_size, num_batches, custom_args):
        full_model_path = os.path.join(r"/mattergen/checkpoints/checkpoints/", model_name)
        base_cmd = f"mattergen-generate {results_path} --model_path={full_model_path} --batch_size={int(batch_size)} --num_batches={int(num_batches)}"
        # 添加自定义参数
        if custom_args.strip():
            base_cmd += f" {custom_args.strip()}"
        return base_cmd, base_cmd
  
    preview_btn.click(
        fn=generate_command,
        inputs=[model_name, results_path, batch_size, num_batches, custom_args],
        outputs=[command_preview, generated_command]
    )
  
    # 新增文件列表组件
    # 修改文件列表组件为动态路径
    # 在文件列表组件前添加刷新按钮
    refresh_btn = gr.Button("🔄 刷新文件列表")
    file_list = gr.Files(
        label="生成结果文件", 
        value=lambda: scan_result_files(results_path.value)
    )
  
    # 添加刷新按钮点击事件
    refresh_btn.click(
        fn=lambda x: scan_result_files(x),
        inputs=results_path,
        outputs=file_list
    )
  
    # 修改执行函数以更新文件列表
    def execute_command(cmd, results_path):  # 确保接收明确的路径参数
        try:
            result = subprocess.run(
                cmd,
                shell=True,
                capture_output=True,
                text=True,
                check=True
            )
            return f"命令执行成功!\n\n输出:\n{result.stdout}", scan_result_files(results_path)
        except subprocess.CalledProcessError as e:
            return f"执行出错:\n{e.stderr}", scan_result_files(results_path)
  
    # 修改按钮点击事件绑定
    run_btn.click(
        fn=execute_command,
        inputs=[generated_command, results_path],  # 添加results_path作为输入
        outputs=[output, file_list]
    )
  
    # 增强路径校验
    def scan_result_files(results_path):
        """扫描结果目录中的文件"""
        if not results_path:  # 新增空值检查
            return []
        try:
            files = [f for f in os.listdir(results_path) 
                    if os.path.isfile(os.path.join(results_path, f))]
            return [os.path.join(results_path, f) for f in files]
        except FileNotFoundError:
            return []

    # 添加路径变更监听
    results_path.change(
        fn=lambda x: scan_result_files(x),
        inputs=results_path,
        outputs=file_list
    )

if __name__ == "__main__":
    demo.launch(pwa=True, server_name="0.0.0.0", server_port=8080)

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值