计算机视觉
文章平均质量分 86
Dream_yz
没有最好,只有更好!
展开
-
计算机视觉知识学习总结
图像分类 图像分类:在已有固定分类标签的集合下,对输入的图像,从分类标签集合中找出一个分类标签,最后把分类标签分配给该输入图像的过程。总上,其主要任务是对于一个给定的图像,预测它属于哪个分类标签或者给出属于一系列不同标签的可能性。 计算机视觉算法在图像识别方面的一些难点: 1)视角变化:同一物体,摄像头可以从多个角度来展现; 2)大小变化:物体可视的大小通常是会变化的(不仅是在图片中,原创 2016-11-19 12:34:09 · 6099 阅读 · 0 评论 -
Caffe中Solver.prototxt解析
Caffe中Solver.prototxt解析Solver流程设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另一个配置文件prototxt来进行);通过forward和backward迭代的进行优化来更新参数;定期的评价测试网络(可设定多少次训练后,在进行一次测试);在优化过程中显示模型和solver的状态。Solver工作在每一次的迭代过程中,So...原创 2019-05-24 22:33:03 · 558 阅读 · 0 评论 -
Linux下CUDA9.0+CUDNN7.0+Tensorflow1.8.0安装详解
Linux下CUDA9.0+CUDNN7.0+Tensorflow1.8.0安装详解NVIDIA驱动安装nouveau驱动去除vim /etc/modprobe.d/blacklist-nouveau.conf在其中添加如下信息:blacklist nouveauoptions nouveau modeset=0执行如下命令使其生效sudo update-initra...原创 2018-08-15 21:30:05 · 6449 阅读 · 0 评论 -
MNIST数据集提取图片和标注信息
MNIST数据集简介MNIST数据集(http://yann.lecun.com/exdb/mnist/)是著名的手写数字分类数据集,主要由一下四部分组成:训练集图片:train-images.idx3-ubyte,处理后能得到60000个训练图片训练街标签:train-labels.idx1-ubyte,处理后能得到60000个训练标签测试集图片:t10k-images.idx...原创 2018-08-11 12:41:42 · 5838 阅读 · 9 评论 -
行人检测_目标检测/识别_人脸识别数据集下载地址
接触计算机视觉相关算法快两年了,把之前用过的数据库下载进行总结 ,以方便更多的人下载。(可以不全,后期有时间在补充)行人检测相关数据库INRIA数据集下载地址:http://pascal.inrialpes.fr/data/human/Caltech行人数据库下载地址:http://www.vision.caltech.edu/Image_Datasets/CaltechPed原创 2018-01-16 10:34:05 · 8322 阅读 · 3 评论 -
典型卷积神经网络结构总结
典型卷积神经网络结构总结LeNet:最早用于数字识别的CNN层关系如下:Data layer:1*28*28Convolutional layer(5*5):20*24*24Pooling(2*2, stride 2):20*12*12Convolutional layer(5*5):50*8*8Pooling(2*2, stride 2):50*4*4Inner Product:50原创 2017-11-04 00:43:13 · 4885 阅读 · 0 评论 -
CVPR 2017最佳论文
2017 CVPR最佳论文- Densely Connected Convolutional Networks。 论文网址:https://arxiv.org/abs/1608.06993 该论文提出一种DenseNet模型,实现了CNN中每一层都以前馈的方式与其他层相连。传统的CNN模型中,L层的网络有L个连接,而对于DenseNet模型,则具有L(L+1)/2个连接。对于每一层,它之原创 2017-10-18 23:06:54 · 1903 阅读 · 0 评论 -
ICCV 2017目标跟踪论文
值得看的ICCV 2017目标跟踪论文如下:1) CREST: Convolutional Residual Learning for Visual Tracking.2) Learning Background-Aware Correlation Filters for Visual Tracking.3) Need for Speed: A Benchmark for Higher原创 2017-09-11 00:47:18 · 4872 阅读 · 1 评论 -
目标检测——深度模型总结
目标检测——深度模型总结简介传统目标检测(基于滑动窗口的检测)主要包括三步:利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域;提取候选区域相关的视觉特征。利用分类器进行识别。深度学习相关的目标检测方法分两类:基于候选区域的,如R-CNN,SPP-net,Fast R-CNN,Faster R-CNN,R-FCN;端到端(End-to-End),如YOLO,SSD。OverFeat模原创 2017-03-05 15:39:05 · 8684 阅读 · 0 评论 -
深度学习初步了解
深度学习初步了解深度学习兴起,源于以下3个方面:更大的数据集新的深度学习技术,如ReLu、DropOut等。新的计算硬件,如GPU等。传统机器学习局限传统机器学习在处理原始形态的自然数据方面存在很大的局限性。它需要技艺高超的工程师和经验丰富的领域专家设计特征提取器,将原始数据转化为合适的中间表示形式或特征向量,学习子系统,即分类器,然后对输入模型进行检测或分类。而深度学习较传统机器学习的一大原创 2017-01-01 16:26:06 · 1296 阅读 · 0 评论 -
计算机视觉领域较好论文汇总
计算机视觉领域较好论文汇总Learning to Track at 100 FPS with Deep Regression Networks (2016) Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks (AAAI 2016) Online Multi-target Tracking using Recu原创 2016-11-27 22:37:47 · 3197 阅读 · 0 评论 -
深度学习工具
深度学习工具目前比较流程的深度学习工具主要有Caffe,Torch & Overfeat,MxNet,TensorFlow,Theano等。CaffeCaffe(快速特征植入的卷积神经网络),有伯克利视觉和学习中心开发的基于C++/CUDA/Python实现的卷积神经网络框架,提供了面向命令行、Matlab和Python的绑定接口。其前身为DeCAF,作者为贾杨清。Caffe特性:它实现了前馈卷积原创 2017-01-01 20:44:47 · 4813 阅读 · 1 评论 -
X86平台下,Caffe_MKL安装详解
X86平台下,Caffe_MKL安装详解安装相关依赖ffmpeg安装1) 下载ffmpeg-3.3.9.tar.bz22) 配置./configure --enable-swscale --enable-avresample–enable-gpl --enable-shared --prefix=/home/yzhang/env/ffmpeg3) 编译make -j4) 安装m...原创 2019-05-27 09:53:16 · 488 阅读 · 0 评论