PyTorch的Tensor这么简单,你还用不明白吗? - 掘金 (juejin.cn)
Tensor翻译成汉语就是张量:
-
单个数字叫常量或者标量
-
一维数组叫向量
-
二维数组叫矩阵
-
更高维的叫张量
相对于Numpy,Pytorch的优势在于每个操作都可以在GPU上执行。默认情况下张量都是创建在CPU上的,我们需要显式地将张量移动到GPU上,但是要知道跨设备复制大张量有很大的时间和内存开销。
# 如果GPU可用的话将数据移到GPU上。
if torch.cuda.is_available():
tensor = tensor.to("cuda")
print(f"Device tensor is stored on: {tensor.device}")
创建张量时候直接将其挪到GPU上有三种写法:
torch.rand(2,3).cuda()
torch.rand(2,3).to("cuda")
torch.rand(2,3, device="cuda")
对tensor输出单行单列的操作:
tensor = torch.rand(3,4)
print(tensor)
print(f"First row: {tensor[0]}") #第一行
print(f"First column: {tensor[:, 0]}") #第一列
print(f"Last column: {tensor[:, -1]}") #最后一列
print(tensor[:, 1]) #第二列
运行结果:
tensor([[0.7533, 0.8648, 0.4569, 0.9276],
[0.1350, 0.7902, 0.4059, 0.2947],
[0.0973, 0.2015, 0.9562, 0.8002]])
First row: tensor([0.7533, 0.8648, 0.4569, 0.9276])
First column: tensor([0.7533, 0.1350, 0.0973])
Last column: tensor([0.9276, 0.2947, 0.8002])
tensor([0.8648, 0.7902, 0.2015])
tensor乘法:
*
在pytorch中是对应元素相乘;
import torch
vec = torch.arange(4)
mtx = torch.arange(12).reshape(4,3)
print(vec*vec)
print(mtx*mtx) #这里print(mtx*vec)或者print(vec*mtx)会报错,两个tensor必须在行或者列上保持元素个数的一致
运行结果:
>>
tensor([0, 1, 4, 9])
tensor([[ 0, 1, 4],
[ 9, 16, 25],
[ 36, 49, 64],
[ 81, 100, 121]])
import torch
vec = torch.arange(4).reshape(4,1) # 增加维度
mtx = torch.arange(12).reshape(4,3)
print(vec*mtx)
print(mtx*vec)
运行结果:
>>
tensor([[ 0, 0, 0],
[ 3, 4, 5],
[12, 14, 16],
[27, 30, 33]])
tensor([[ 0, 0, 0],
[ 3, 4, 5],
[12, 14, 16],
[27, 30, 33]])
torch.mv(A,B)在pytorch是矩阵相乘,如果A是一个n×m张量,B是一个1×m维张量,将会输出一个n 元 1维张量。实际计算过程中是B×AT,即B×(A的转置);
vec = torch.arange(4)
mtx = torch.arange(12).reshape(3,4)
print(vec)
print(mtx)
print(torch.mv(mtx,vec))
运行结果:
tensor([0, 1, 2, 3])
tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
tensor([14, 38, 62])
torch.mm(A,B)
, 如果A是一个n×m张量,B
是一个 m×p张量,将会输出一个 n×p张量
torch.dot(A,B),计算两个张量的内积,要求两个张量都为一维向量
import torch
vec = torch.arange(4)
print(torch.dot(vec, vec))
运行结果:
tensor(14)
黑科技@,
也是严格按照第一个参数的列数要等于第二个参数的行数
import torch
vec = torch.arange(4)
mtx = torch.arange(12)
m1 = mtx.reshape(4,3)
m2 = mtx.reshape(3,4)
print(vec @ vec) #vec @ vec==torch.dot(vec,vec)
print(vec @ m1) # 本句直接使用torch.mv()无法执行
print(m2 @ vec) # m2 @ vec==torch.mv(m2,vec)
print(m1 @ m2) # m1 @ m2==torch.mm(m1,m2)
运行结果:
>>
tensor(14)
tensor([42, 48, 54])
tensor([14, 38, 62])
tensor([[ 20, 23, 26, 29],
[ 56, 68, 80, 92],
[ 92, 113, 134, 155],
[128, 158, 188, 218]])
torch.matmul(),
matmul不自局限于一二维,可以进行高维张量的乘法
vec = torch.arange(3)
mtx = torch.arange(12).reshape(3,4)
print(torch.matmul(vec,mtx))
print(torch.matmul(vec,vec))
print(torch.matmul(mtx.T,mtx))
print(torch.matmul(mtx.T,vec))
运行结果:
>>
tensor([20, 23, 26, 29])
tensor(5)
tensor([[ 80, 92, 104, 116],
[ 92, 107, 122, 137],
[104, 122, 140, 158],
[116, 137, 158, 179]])
tensor([20, 23, 26, 29])
tensor.add_(),执行张量的加法运算
tensor = torch.ones(4, 4)
tensor[:,1] = 0
print(tensor, "\n")
tensor.add_(5)
print(tensor)
运行结果:
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
tensor([[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.]])