3.24力扣刷题记录

本文详细解析了如何使用数据结构实现滑动窗口最大值问题,通过一个能返回最大值的队列,实现了在O(1)时间复杂度内完成push、pop和获取最大值的操作。具体解决方案包括维护一个主队列和一个非严格单调递减的辅助双向队列,确保在窗口滑动时高效地更新最大值。
摘要由CSDN通过智能技术生成

1.滑动窗口的最大值(等价于实现max函数的队列

题目描述:给定一个数组 nums 和滑动窗口的大小 k,请找出所有滑动窗口里的最大值。
难度:困难
示例来自力扣示例
在这里插入图片描述
剑指offer59/力扣239

题解

我们先看一道包含min函数的栈
题目描述:定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min、push 及 pop 的时间复杂度都是 O(1)。

class MinStack {
private:
    stack<int> stack1,stack2;
public:
    /** initialize your data structure here. */
    MinStack() {

    }
    
    void push(int x) {
        stack1.push(x);
        if(stack2.empty()||stack2.top()>=x)
            stack2.push(x);
    }
    
    void pop() {
        if(stack1.top()==stack2.top())
            stack2.pop();
        stack1.pop();
    }
    
    int top() {
        return stack1.top();
    }
    
    int min() {
        return stack2.top();
    }
};

能返回最小值的栈的思路为,除保存所有元素的栈之外,再增加一个非严格单调递减辅助栈,这样每次返回辅助栈的top元素,即为栈中最小的元素的值,在栈删除元素的时候,比较是否跟辅助栈的top元素相等,如果相等,将辅助栈top元素弹出,栈插入元素时,比较是否小于等于辅助栈栈顶元素,如果小于等于则将其加入辅助栈。

本题实际上可以理解为实现一个能返回最大值的队列,滑动窗口没滑动一次,队列就pop一次,push一次,并且返回当前队列当中的最大值。

class maxQueue{
queue<int> q;
deque<int> maxq;
public:
    void push_back(int n){
        q.push(n);
        if(maxq.empty()||maxq.front()>=n){
            while(!maxq.empty()&&maxq.back()<n)
                maxq.pop_back();
            maxq.push_back(n);
        }
        else{
            maxq.clear();
            maxq.push_back(n);
        }
    }
    void pop(){
        int temp=q.front();
        q.pop();
        if(temp==maxq.front())
            maxq.pop_front();
    }
    int getmax(){
        return maxq.front();
    }
};


class Solution {
public:

    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        int n=nums.size();
        if(n==0)
            return {};
        vector<int> ans;
        maxQueue q;
        for(int i=0;i<k;i++)
            q.push_back(nums[i]);
        ans.push_back(q.getmax());
        for(int i=k;i<n;i++){
            q.pop();
            q.push_back(nums[i]);
            ans.push_back(q.getmax());
        }
        return ans;
    }
};

本题为返回最大值的队列,我们除保存所有元素的队列之外,再增加一个非严格单调递减辅助双向队列,每次返回辅助队列的front元素,即为队列中最大的元素的值。队列插入元素时,比较其与辅助队列front元素的大小,如果小于等于,则从后向前删除辅助队列元素,直到辅助队列为空,或队列尾部元素大于等于新插元素大小,将新插元素加入辅助队列末尾;如果大于,则将辅助队列清空,将新插元素插入队列。

好的,关于力扣刷题C++常用操作,我可以给你一些常见的操作和技巧: 1. 使用 STL 容器和算法库:STL(Standard Template Library)是 C++ 标准库中的一个重要组成部分,包含了许多常用的容器和算法。在力扣刷题中,使用 STL 可以大大提高代码的效率和可读性。例如,vector 可以用来存储动态数组,sort 可以用来排序等等。 2. 使用 auto 关键字:auto 关键字可以自动推导变量类型,可以减少代码量和提高可读性。例如,auto x = 1; 可以自动推导出 x 的类型为 int。 3. 使用 lambda 表达式:lambda 表达式是 C++11 中引入的一种匿名函数,可以方便地定义一些简单的函数对象。在力扣刷题中,使用 lambda 表达式可以简化代码,例如在 sort 函数中自定义比较函数。 4. 使用位运算:位运算是一种高效的运算方式,在力扣刷题中经常会用到。例如,左移运算符 << 可以用来计算 2 的幂次方,右移运算符 >> 可以用来除以 2 等等。 5. 使用递归:递归是一种常见的算法思想,在力扣刷题中也经常会用到。例如,二叉树的遍历、链表的反转等等。 6. 使用 STL 中的 priority_queue:priority_queue 是 STL 中的一个容器,可以用来实现堆。在力扣刷题中,使用 priority_queue 可以方便地实现一些需要维护最大值或最小值的算法。 7. 使用 STL 中的 unordered_map:unordered_map 是 STL 中的一个容器,可以用来实现哈希表。在力扣刷题中,使用 unordered_map 可以方便地实现一些需要快速查找和插入的算法。 8. 使用 STL 中的 string:string 是 STL 中的一个容器,可以用来存储字符串。在力扣刷题中,使用 string 可以方便地处理字符串相关的问题。 9. 注意边界条件:在力扣刷题中,边界条件往往是解决问题的关键。需要仔细分析题目,考虑各种边界情况,避免出现错误。 10. 注意时间复杂度:在力扣刷题中,时间复杂度往往是评判代码优劣的重要指标。需要仔细分析算法的时间复杂度,并尽可能优化代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值