如何使用 amd 显卡在本地运行大语言模型

随着大语言模型(LLM)的发展,越来越多的开发者希望在本地运行这些模型,以便更好地掌控数据安全、避免延迟、并利用自有硬件的计算能力。但是大多数 AI 模型训练和推理的框架通常对 NVIDIA 的 CUDA 提供支持,而 AMD 显卡的兼容性相对较弱。本文将介绍如何利用 ROCm 和 ollama 在本地运行大语言模型。

准备工作

确认自己的 AMD 显卡是否支持 ROCm

rocm.docs.amd.com

supported GPUs

对于官方支持 HIP SDK 的显卡,只需要下载并安装 AMD 官方版本的 ROCm 和 Ollama 的官方版本就能直接使用。

本文主要是介绍对于官方不支持的显卡应该如何安装并使用 ROCm 和 ollama。

下载 ROCmLibs

下载对应显卡型号的压缩包

download rocmlibs

比如我的显卡是 AMD Radeon RX 6750 XT 型号是 gfx1031,那么我就可以选择下载

  • gfx1031:
    • rocm gfx1031 for hip sdk 5.7 optimized with little wu logic and I8II support.7z

下载安装 ollama-for-amd

对于官方不支持的显卡才需要用这个版本,也能自己编译,官方支持的显卡只需要下载安装官方版本的就行了。

ollama-for-amd

download ollama

下载完成后运行安装包一键安装完成,安装成功后运行 ollama

ollama installed

修改 ollama-for-amd

从 log 中可以看到 ollama 没有跑在显卡上,输出没有发现兼容的显卡

source=amd_windows.go:138 msg="amdgpu is not supported (supported types:[gfx1103])" gpu_type=gfx1031
source=gpu.go:386 msg="no compatible GPUs were discovered"

现在就需要用到之前下载的 ROCmLibs

我的显卡型号是 gfx1031 所以对应 rocm gfx1031 for hip sdk 5.7 optimized with little wu logic and I8II support.7z

打开软件安装目录,比如这是我的安装路径 C:\Users\lin\AppData\Local\Programs\Ollama\lib\ollama

  1. 将压缩包中的 rocblas.dll 替换 C:\Users\lin\AppData\Local\Programs\Ollama\lib\ollama\rocblas.dll
  2. 将压缩包中的 library 文件夹替换 C:\Users\lin\AppData\Local\Programs\Ollama\lib\ollama\rocblas\library

退出 ollama 并重新运行

source=types.go:123 msg="inference compute" id=0 library=rocm variant="" compute=gfx1031 driver=6.2 name="AMD Radeon RX 6750 XT" total="12.0 GiB" available="11.8 GiB"

就能在 log 中看到成功识别到显卡了

现在运行模型就能运行在显卡上了,速度也是快了

安装并运行模型

ollama模型库上查看支持哪些模型

比如要安装运行qwen2

install model

use model

参考资料


有什么问题可以发表评论一起讨论交流学习
如果觉得这篇文章对你有帮助,可以回复表情、发表评论、分享给更多的朋友,谢谢 请添加图片描述


博客文章页
个人博客

### 安装和配置 AMD Radeon RX 6400 的 Ollama 驱动 对于 AMD Radeon RX 6400 显卡,在准备安装 Ollama 支持之前,需要确保选择了正确的 ROCm 版本。由于该型号属于 gfx1032 架构,因此应选择适用于此架构的 ROCm 和 HIP SDK。 #### 下载并安装 ROCm 和 HIP SDK 为了适配 AMD Radeon RX 6400,推荐下载 `gfx1032: rocm gfx1032 for hip sdk` 并确保版本与硬件相匹配[^1]。具体操作如下: ```bash wget https://example.com/path/to/gfx1032_rocm_sdk_version.7z unzip gfx1032_rocm_sdk_version.7z -d /opt/rocm/ ``` 完成解压后,按照官方文档中的说明继续设置环境变量和其他必要的初始化工作。 #### 确认 Open WebUI 对 ROCm 的支持情况 在部署前务必验证所使用的 Open WebUI Docker 镜像是否已经内置了对 ROCm 的支持。如果默认镜像不提供这种支持,则考虑基于现有资源自行构建一个新的镜像来满足需求[^2]。 #### 解决潜在性能及兼容性挑战 考虑到开源生态系统内 AMD GPU 加速的支持程度有限,可能会遇到一些特定于大语言模型处理速度上的瓶颈。此时可以尝试调整应用参数以减少计算负担;另外也可以通过监控社区反馈渠道(例如 GitHub Issues 页面),及时获取最新的进展和技术指导。 #### 处理网络连接异常状况 当发现宿主机同容器之间的通讯出现问题时,一种常见的解决方案就是把 `host.docker.internal` 更改为实际物理机地址(比如:192.168.x.x 形式的私有IP)。这一步骤有助于改善两者间的交互效率,从而保障整个系统的稳定运行
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值