题目:
Let's play the minesweeper game (Wikipedia, online game)!
You are given a 2D char matrix representing the game board. 'M' represents an unrevealed mine, 'E' represents an unrevealed empty square, 'B' represents a revealed blank square that has no adjacent (above, below, left, right, and all 4 diagonals) mines, digit ('1' to '8') represents how many mines are adjacent to this revealed square, and finally 'X' represents a revealed mine.
Now given the next click position (row and column indices) among all the unrevealed squares ('M' or 'E'), return the board after revealing this position according to the following rules:
- If a mine ('M') is revealed, then the game is over - change it to 'X'.
- If an empty square ('E') with no adjacent mines is revealed, then change it to revealed blank ('B') and all of its adjacent unrevealed squares should be revealed recursively.
- If an empty square ('E') with at least one adjacent mine is revealed, then change it to a digit ('1' to '8') representing the number of adjacent mines.
- Return the board when no more squares will be revealed.
Example 1:
Input: [['E', 'E', 'E', 'E', 'E'], ['E', 'E', 'M', 'E', 'E'], ['E', 'E', 'E', 'E', 'E'], ['E', 'E', 'E', 'E', 'E']] Click : [3,0] Output: [['B', '1', 'E', '1', 'B'], ['B', '1', 'M', '1', 'B'], ['B', '1', '1', '1', 'B'], ['B', 'B', 'B', 'B', 'B']] Explanation:
Example 2:
Input: [['B', '1', 'E', '1', 'B'], ['B', '1', 'M', '1', 'B'], ['B', '1', '1', '1', 'B'], ['B', 'B', 'B', 'B', 'B']] Click : [1,2] Output: [['B', '1', 'E', '1', 'B'], ['B', '1', 'X', '1', 'B'], ['B', '1', '1', '1', 'B'], ['B', 'B', 'B', 'B', 'B']] Explanation:
Note:
- The range of the input matrix's height and width is [1,50].
- The click position will only be an unrevealed square ('M' or 'E'), which also means the input board contains at least one clickable square.
- The input board won't be a stage when game is over (some mines have been revealed).
- For simplicity, not mentioned rules should be ignored in this problem. For example, you don't need to reveal all the unrevealed mines when the game is over, consider any cases that you will win the game or flag any squares.
分析:
- 采用直接解法
- 当点击的位置为'M',直接将当前位置改为'X'
- 当点击位置为'E',判断8个邻接位置,当邻接位置为'M'时,总雷数加1,当雷的数量不为0时,将当前位置改为雷的数量;当总雷数为0,说明当前位置周边没有雷,应该置为'B',但为了对邻接位置递归时可以正常结束,将访问过的空位设置为'P',对有效邻接位置递归处理;
- 将标记为'P'的位置改为'B'
代码:
class Solution(object):
def updateBoard(self, board, click):
"""
:type board: List[List[str]]
:type click: List[int]
:rtype: List[List[str]]
"""
self.len0 = len(board)
self.len1 = len(board[0])
self.pSqure = []
def validSquare(location):
if 0 <= location[0] < self.len0 and 0 <= location[1] <= self.len1:
return True
else:
return False
def clicked(location,board = board):
char = board[location[0]][location[1]]
if char == 'M':
board[location[0]][location[1]] = 'X'
else:
adjMatDiff = [[location[0] - i,location[1] - j] for i in [-1,1,0] for j in [-1,1,0]]
adjMatDiff.pop()
validAdj = [x for x in adjMatDiff if validSquare(x)]
sumAdj = 0
for y in validAdj:
if board[y[0]][y[1]] == 'M':
sumAdj += 1
if sumAdj:
board[location[0]][location[1]] = str(sumAdj)
else:
board[location[0]][location[1]] = 'P'
self.pSqure.append(location)
for z in validAdj:
if board[z[0]][z[1]] != 'P':
click(z)
clicked(click)
for x in self.pSqure:
board[x[0]][x[1]] = 'B'
return board
思考: