网络质量分析
文章平均质量分 94
网络质量分析相关技术、文献
YZRuin
这个作者很懒,什么都没留下…
展开
-
Mobile network quality of experience using big data analytics approach
传统上,体验质量主要在实验室实验中进行检查,以实现固定的上下文因素。虽然结果显示了代表感知 QoE 的估计平均意见分数。当务之急是利用从移动网络收集的大数据(大数据)来估计平均意见得分,这些数据包括不同用户的位置和特定服务的时间。因为时间和地点会对用户感知的体验质量产生巨大影响。因此,本文提出了一个通过大数据分析对感知QoE进行建模的框架。拟议的框架描述了估计感知体验质量的过程,以帮助移动网络运营商有效地管理网络性能并帮助提供令人满意的移动互联网服务。原创 2024-01-18 10:20:58 · 1087 阅读 · 1 评论 -
Predicting Quality of Services Based on a Two-Stream Deep Learning Model With User and Service Graph
用户每次调用服务时,都会得到一个服务的QoS值,该值表示用户观察到的服务性能。因此,为了充分利用已有的QoS值,深入发现用户与服务之间的各种关系,我们构建了用户和服务图,呈现了用户与服务之间的直接关系和诱导关系,以获取更多关于用户和服务的信息,包括用户-用户关系、服务-服务关系和用户-服务关系。它们是两种类型的三层图,用于从现有数据中获取直接和诱导的深度用户-服务关系,包括用户-用户、服务-服务和用户-服务关系。它使用基于覆盖的聚类方法来查找相似的用户/服务和用户/服务的邻域信息,以提高预测精度。原创 2024-01-18 15:45:47 · 877 阅读 · 0 评论 -
LTE Network Quality Analysis Method Based on MR Data and XGBoost Algorithm
特征变量包括:服务小区的EARFCN(E-UTRAN绝对射频信道数)、PCI(物理小区标识符)、CRS RSRP(小区特定参考信号接收功率)、CRS SINR(信号干扰加噪声比)、nrsrp1(相邻参考信号接收功率),以及相邻小区的NCell EARFCN#x(X相邻小区的EARFCN)、NCell PCI#x(X相邻小区的PCI)、NCell RSRP#x(X相邻小区的RSRP)。通常,算法模型中的参数较多,并且每个参数没有明确的限制,因此通过手动调参很难找到最优的参数组合。不同分类算法的预测精度如下。原创 2024-01-19 14:34:50 · 858 阅读 · 1 评论