LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection
LogFormer是一个用于日志异常检测的预训练和调整流水线,包括预训练阶段和基于适配器的调整阶段。在预训练阶段,模型使用预训练语言模型(具体来说是Sentence-BERT)在源域数据集上提取日志序列的特征。随后,模型通过轻量级适配器将预训练的编码器模块转移到目标域,同时冻结预训练编码器和日志注意力层的参数。在HDFS、BGL和Thunderbird数据集上进行了实验,比较了LogFormer与DeepLog、LogAnomaly等方法的性能。实验中使用了二元交叉熵(BCE)损失进行训练。
原创
2024-07-08 19:50:27 ·
757 阅读 ·
0 评论