【剑指offer】面试题11前置 查找与快排

1.考点:

  • 考点1:对于二分查找的多种实现方式(ABC),不同版本的特色不同;
  • 考点2:Fibonacci查找的实现方式,以及其具体时间复杂度的了解;
  • 考点3:快速排序算法的思想以及实现方式(核心为快速划分算法);

2.代码

  • 三种二分查找实现的过程都是小不同,但是特色均不同,主要是记住A这种最基本的形式,同时切记二分查找被用于排序数组,不要使用到无序查找中;
  • Fibonacci查找实际上比A类的二分查找还是快一点的,但是与BC两种特色的很难比较,所以当被问及时可以稍微提一下;
  • 快排的核心就是快速自身代码加上内部的快速划分算法,快速划分就是选取一个轴点之后将比它小的放到它左边,比它大的到右边,最后不断地分而治之,到最后区间只有两个数以下时即可停止(这个2很经典,常规想法是到1,但是到2就可以了);
#include <iostream>
#include <vector>
using namespace std;

//二分查找,三种方式的mi都是选取的中间值,所以时间复杂度都是O(logn)
//版本A最原始的思想,为在排序的数组中,从中点二分位置处判断中点较大还是较小,较大则取大区间,较小则取小区间
//对于多个相同的数,只能根据代码顺序找到最近的一个,时间复杂度具体为O(1.50logn)
template<typename T> static int binSearch_A(const vector<T>& A, T const& e, int lo, int hi)
{
	while (lo < hi)
	{
		int mi = (lo + hi) >> 1;
		//区间1:[lo,mi)
		if (e < A[mi])
			hi = mi;
		//区间2:[mi+1,hi)
		else if (e > A[mi])
			lo = mi + 1;
		//区间3:直接命中mi
		else
			return mi;
	}
	return -1;
}

//B版本,特色在于成功命中不能直接返回,需要在最后结束循环后return时进行判断
//对于多个相同的数,只能根据代码顺序找到最近的一个,但是各分支的查找长度更加接近,故整体性能更趋稳定
template<typename T> static int binSearch_B(const vector<T>& A, T const& e, int lo, int hi)
{
	while (lo + 1 < hi)
	{
		int mi = (lo + hi) >> 1;
		//区间1:[lo,mi)
		if (e < A[mi])
			hi = mi;
		//区间2:[mi,hi)
		else
			lo = mi;
	}
	//出口时hi = lo + 1,且hi为开区间,只能选择lo
	return (e == A[lo]) ? lo : -1;
}

//C版本,与B基本相同,但是特色在于能够返回最后失败的位置
//对于多个相同的数,可以返回秩最大者
template<typename T> static int binSearch_C(const vector<T>& A, T const& e, int lo, int hi)
{
	while (lo < hi)
	{
		int mi = (lo + hi) >> 1;
		//区间1:[lo,mi)
		if (e < A[mi])
			hi = mi;
		//区间2:[mi + 1,hi)
		else
			lo = mi + 1;
	}
	//此版本的特色,最后找到的区间,lo是大于元素e的最小秩,所以--lo为不大于e的最大秩,即此值要么是命中值,要么是失败的所处位置
	return --lo;
}

class Fib
{
public:
	vector<int> m_fib;

	Fib(int n)
	{
		int f = 1;
		int s = 0;
		while (n > s)
		{
			s = f + s;
			f = s - f;
			m_fib.push_back(s);
		}
	}
	
};

//fibonacci查找,也称黄金分割查找(就是取mi值的方式改了,随着fibnocci数列走,为lo+fib-1)
//时间复杂度O(1.44logn)
template<typename T> static int fibonacciSearch_A(const vector<T>& A, T const& e, int lo, int hi)
{
	Fib fib(hi - lo);
	int place = fib.m_fib.size() - 1;
	while (lo < hi)
	{
		while (hi - lo < fib.m_fib[place--]);
		int mi = lo + fib.m_fib[place] - 1;
		//区间1:[lo,mi)
		if (e < A[mi])
			hi = mi;
		//区间2:[mi+1,hi)
		else if (e > A[mi])
			lo = mi + 1;
		//区间3:直接命中mi
		else
			return mi;
	}
	return -1;
}

//快排算法,思想就是取中位点,使用快速划分算法将一组数据中比轴点小的数移到其左边,大移到右边,直到数据段大小小于2
template<typename T> void quickSort(vector<T>& A, int lo, int hi)
{
	//这个小于2很经典,常规思想的话这里应该是<1,但是实际上<2就可以了,能够加快计算效率
	if (hi - lo < 2)
		return;
	int mi = partition(A, lo, hi - 1);
	quickSort(A, lo, mi);
	quickSort(A, mi + 1, hi);
}

//快速划分算法,首先是选取轴点,然后根据轴点进行划分,最后返回轴点位置(秩)
template<typename T> int partition(vector<T>& A, int lo, int hi)
{
	//1.首先随机选取数据段中的一个位置(设其为轴点pivot,将该位置的数值与lo处的数值进行交换
	//这里想随机就随机,不想随机直接注释掉都行
	swap(A[lo], A[lo + rand() % (hi - lo + 1)]);
	//2.获取轴点的数据值pivot(其位置在lo处,这里的值很重要,关系到后面所有的数据交换)
	T pivot = A[lo];
	//3.交换过程为前后双指针,前指针用于将比节点小的数换过去,后指针用于将比节点大的数换过去
	//对于轴点的理解,就是这个值刚开始就成了虚值(可以理解为A[lo]位置直接为空),直到最后才会放回去
	while (lo < hi)
	{
		//3.1由于轴点的初始位为lo,所以从hi开始搜索大值,当搜索到比轴点小的值则换过来
		while ((lo < hi) && (pivot <= A[hi]))
			hi--;
		A[lo] = A[hi];
		//3.2然后从前往后搜lo
		while ((lo < hi) && (pivot >= A[lo]))
			lo++;
		A[hi] = A[lo];
	}
	//最后一步为A[hi] = A[lo],在完成上述搜索后,lo处的位置属于“最后一个被换的点”,所以将轴点放入此位置
	A[lo] = pivot;
	return lo;
}

int main()
{
	vector<int> a = { 1,1,23,124,143,3252454,543,634,12,312,312,12,1,1,2,3,4,6,7,13,89,124,134 };
	for (auto &s : a)
		cout << s << " ";
	cout << endl;
	quickSort(a, 0, a.size());
	for (auto &s : a)
		cout << s << " ";
	cout << endl;
	cout << "place is: " << binSearch_A<int>(a, 89, 0, a.size()) << endl;
	cout << "place is: " << binSearch_B<int>(a, 89, 0, a.size()) << endl;
	cout << "place is: " << binSearch_C<int>(a, 89, 0, a.size()) << endl;
	cout << "place is: " << fibonacciSearch_A<int>(a, 89, 0, a.size()) << endl;

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

方寸间沧海桑田

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值