概念
在一颗有根树中,从根节点经过该节点的所有节点(包括它自己),就是它的祖先。而最近公共祖先,则是指两个节点共同的祖先中离得最近的一个,也就是深度最大的一个祖先节点。
朴素算法求解
首先,将两个子节点跳到同一个深度上。然后再暴力往上跳,当两个子节点所跳的点第一次重合时,那么这个节点就是要求的它们的最近公共祖先。乍一看,时间复杂度并不太高,但是在一些数据(毒瘤),暴力算法肯定是不可取的。就比如一条链也可以看作一颗树,两个深度相差很大的子节点,求公共祖先,每次询问的时间复杂度为O(n),多次询问肯定是吃不消的。所以,就有dalao想出来了用倍增来优化LCA。
倍增优化求解
倍增算法,就是每次将区间的最值预处理出来,求得区间长度为2^i的最值,用于求静态数组。而对于LCA,相当于求出一个节点的第2^i个祖先节点。然后在跳到同一高度的时候,也可以将两个节点的差值dep划分为最多log n 个子区间,就可以大大减少所消耗的时间。跳到同一个高度后,再进行跳跃,倒序从 log n 遍历到0,如果两个子节点跳跃长度为2^i时跳到了同一个节点,就说明这个节点是它们的公共祖先,但是不一定是最近公共祖先。所以此时,应该缩短区间长度,直到两个节点跳到的不是同一个节点为止。这样,就可以一步步的逼近它们的最近公共祖先。当两个节点往上跳一格时,所接触到的节点是相同的,那么可以肯定,这个节点就一定是它们的最近公共祖先了。
Code (略微改进)
#include<bits/stdc++.h>
#include<string>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define ll long long
using namespace std;
inline int read(){
int x=0,f=1;char s=getchar();
while (s>'9'||s<'0'){
if (s=='-') f=-f;
s=getchar();
}
while (s>='0'&&s<='9'){
x=x*10+s-'0';
s=getchar();
}
return x*f;
}
const int N = 1e6+10;
int n,m,s,u,v,fa[N][21],x,y,first[N],cnt,dep[N];
struct node{
int nxt,to;
}edges[N*2];
bool d[N];
void add(int u,int v) {
edges[++cnt].to=v;
edges[cnt].nxt=first[u];
first[u]=cnt;
}
void dfs(int root) {
d[root]=true;
for (int t=first[root];t;t=edges[t].nxt) {
int h=edges[t].to;
if (d[h]) continue;
dep[h]=dep[root]+1;
fa[h][0]=root;
dfs(h);
}
}
int LCA(int x,int y) {
int d1=x,d2=y;
if (dep[d1]<dep[d2]) swap(d1,d2);
for (int i=20;i>=0;--i)
if (dep[fa[d1][i]]>=dep[d2]) d1=fa[d1][i];
if (d1==d2) return d1;
for (int i=20;i>=0;--i)
if (fa[d1][i]!=fa[d2][i]) d1=fa[d1][i],d2=fa[d2][i];
return fa[d1][0];
}
int main(){
n=read();m=read();s=read();
for (int i=1;i<n;++i) {
u=read();v=read();
add(u,v);add(v,u);
}
dep[s]=1;
dfs(s);
for (int i=1;i<=20;++i) {
for (int j=1;j<=n;++j)
fa[j][i]=fa[fa[j][i-1]][i-1];
}
for (int i=1;i<=m;++i) {
x=read();y=read();
printf("%d\n",LCA(x,y));
}
return 0;
}
树链剖分求解
详情见树链剖分。