pytorch学习笔记

dateset类代码基本操作

import os.path

from torch.utils.data import Dataset
from PIL import Image

class Mydata(Dataset):
    def __init__(self,root_dir,label_dir):
        self.root_dir = root_dir
        self.label_dir = label_dir
        self.path = os.path.join(self.root_dir,self.label_dir)
        self.img_path = os.listdir(self.path)

    def __getitem__(self, idx):
        img_name = self.img_path[idx]
        img_item_path = os.path.join(self.root_dir,self.label_dir,img_name)
        img = Image.open(img_item_path)
        label = self.label_dir
        return img,label

    def __len__(self):
        return len(self.img_path)


root_dir = "dataset/train"
ants_label_dir = "ants"     #蚂蚁数据集
bees_label_dir = "bees"
ants_dataset = Mydata(root_dir,ants_label_dir)

# train_dataset = ants_label_dir + bees_label_dir 也可以把两个数据集合起来

输入ants_dataset[0]可以获取
在这里插入图片描述
打开图片:
img,label = ants_dataset[0]
img.show()

Tensorboard的使用

SummaryWriter类的使用

SummaryWriter(“文件夹名”) #存到这个文件下
writer.add_image()
writer.add_scalar(self,tag,scalar_value,global_step)
tag:标题
scalar_value:y轴
global_step:x轴(训练了多少次)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天都要学习呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值