深度学习
YZXnuaa
乍见之欢不如久处不厌
展开
-
深度学习模型压缩与加速算法之SqueezeNet和ShuffleNet
前言自从AlexNet一举夺得ILSVRC 2012 ImageNet图像分类竞赛的冠军后,卷积神经网络(CNN)的热潮便席卷了整个计算机视觉领域。CNN模型火速替代了传统人工设计(hand-crafted)特征和分类器,不仅提供了一种端到端的处理方法,还大幅度地刷新了各个图像竞赛任务的精度,更甚者超越了人眼的精度(LFW人脸识别任务)。CNN模型在不断逼近计算机视觉任务的精度极限的同时,其深转载 2018-01-10 14:42:13 · 678 阅读 · 0 评论 -
50行代码搞定(PyTorch) GAN
2014年,Ian Goodfellow和他在蒙特利尔大学的同事们发表了一篇令人惊叹的论文,正式把生成对抗网络(GANs)介绍给全世界。通过把计算图和博弈论创新性的结合起来,GANs有能力让两个互相对抗的模型通过反向传播共同训练。模型中有两个相互对抗的角色,我们分别称为G和D,简单解释如下:G是一个生成器,它试图通过学习真实数据集R,来创建逼真的假数据;D是鉴别器,从R和G处获得数据并标记差异。G...转载 2018-03-27 14:27:02 · 1027 阅读 · 0 评论 -
DCGAN TensorFlow实现
生成对抗网络因为优雅的创意和优秀的性能吸引了很多研究者与开发者,本文从简洁的案例出发详解解释了 DCGAN,包括生成器的解卷积和判别器的卷积过程。此外,本文还详细说明了 DCGAN 的实现过程,是非常好的实践教程。 热身 假设你附近有个很棒的派对,你真的非常想去。但是,存在一个问题。为了参加聚会...转载 2018-03-28 10:00:09 · 4583 阅读 · 0 评论 -
MaskRCNN:三大基础结构DeepMask、SharpMask、MultiPathNet
MaskXRCnn俨然成为一个现阶段最成功的图像检测分割网络,关于MaskXRCnn的介绍,需要从MaskRCNN看起。 当然一个煽情的介绍可见:何恺明团队推出Mask^X R-CNN,将实例分割扩展到3000类。 MaskRCnn取得的精细结果有三个主要技术构架:DeepMask、SharpMask、MultiPathNet。MaskRCNN与普通FNN的典型不...转载 2018-03-28 10:37:23 · 3940 阅读 · 0 评论 -
Wasserstein distance WGAN 知乎相关三篇
作者:子元链接:https://www.zhihu.com/question/39872326/answer/83688277来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。用什么距离取决于你关心什么类型的差别。举几个例子。1. Kullback-Leibler divergence对于两个分布和,KL散度定义为。可以看出,如果要小,那么大的地方必须要大(否则会很大)...转载 2018-03-28 11:26:43 · 8445 阅读 · 1 评论 -
激活函数 Sigmoid/Tanh/ReLU/Maxout
日常 coding 中,我们会很自然的使用一些激活函数,比如:sigmoid、ReLU等等。不过好像忘了问自己一()件事:为什么需要激活函数?激活函数都有哪些?都长什么样?有哪些优缺点?怎么选用激活函数?本文正是基于这些问题展开的,欢迎批评指正!(此图并没有什么卵用,纯属为了装x …)Why use activation functions?激活函数通常有如下一些性质:非线性: 当激活函数是线性的...转载 2018-03-28 20:36:42 · 1861 阅读 · 0 评论 -
人脸数据库大全(包括人脸识别、关键点检测、表情识别,人脸姿态等等)
搞计算机视觉的人,对人脸技术并不陌生。在做实验的时候需要各种数据集进行训练,却往往苦于找不到合适的数据集,这篇文章将给大家带来一点福音。目前为止最全的是人脸数据库总结:The Color FERET Database, USAThe FERET program set out to establish a large database of facial images that was gathe...转载 2018-04-13 22:42:45 · 3724 阅读 · 1 评论 -
#error This file was generated by an older version of protoc 一种浪费时间的错误方法
行不通的方法,浪费时间根据<<深度学习21天实战Caffe>>书中P102页,编写程序 blob_demo.cpp, 并把它放置在caffe目录下,编译时出现如下提示:sf@ubuntu:~/caffe$ g++ -o app ./blob_demo.cpp -I ./include/ -D CPU_ONLY -I ./.build_release/src -L .ildb...转载 2018-05-11 17:21:03 · 3123 阅读 · 0 评论 -
crfasrnn环境搭建,跑demo
crfasrnn官网:https://github.com/torrvision/crfasrnn按照官网的步骤说明做即可(1)将下载得到的压缩包解压,得到crfasrnn文件夹,将该文件夹拷贝到Linux下面(2)安装crfasrnn/caffe/python/requirements.txt中提到的Python包,单个安装执行下列命令:[html] view plain copy sudo p...转载 2018-05-11 18:15:36 · 294 阅读 · 0 评论 -
语义分割总结 2017
翻译自qure.ai什么是语义分割对图片的每个像素都做分类。较为重要的语义分割数据集有:VOC2012 以及 MSCOCO 。有哪几种方法传统机器学习方法:如像素级的决策树分类,参考TextonForest 以及 Random Forest based classifiers 。再有就是深度学习方法。更确切地说,是卷积神经网络。深度学习最初流行的分割方法是,打补丁式的分类方法 ( patch cl...转载 2018-05-07 18:14:34 · 929 阅读 · 0 评论 -
用官方demo作为预训练网络——yolov3为例
1.下载权重文件并放入检测器目录下,通过该地址下载:https://pjreddie.com/media/files/yolov3.weights2.理解权重文件官方的权重文件是一个二进制文件,它以序列方式储存神经网络权重。我们必须小心地读取权重,因为权重只是以浮点形式储存,没有其它信息能告诉我们到底它们属于哪一层。所以如果读取错误,那么很可能权重加载就全错了,模型也完全不能用。因此,只阅读浮点数...原创 2018-06-01 17:25:22 · 6194 阅读 · 1 评论 -
GAN的理解与TensorFlow的实现 谷磊
对应的github:https://github.com/burness/tensorflow-101近年来,基于数据而习得“特征”的深度学习技术受到狂热追捧,而其中GAN模型训练方法更加具有激进意味:它生成数据本身。GAN是“生成对抗网络”(Generative Adversarial Networks)的简称,由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域。201...转载 2018-03-27 14:23:39 · 2487 阅读 · 0 评论 -
GAN的公开课的小例子
前言本文会从头介绍生成对抗式网络的一些内容,从生成式模型开始说起,到GAN的基本原理,InfoGAN,AC-GAN的基本科普,如果有任何有错误的地方,请随时喷,我刚开始研究GAN这块的内容,希望和大家一起学习。生成式模型何为生成式模型?在很多machine learning的教程或者公开课上,通常会把machine learning的算法分为两类: 生成式模型、判别式模型;其区别在于: 对于输入x...转载 2018-03-27 14:21:54 · 1190 阅读 · 1 评论 -
Pascal VOC 数据集介绍
介绍Pascal VOC数据集:Challenge and tasks, 只介绍Detection与Segmentation相关内容。数据格式衡量方式voc2007, voc2012Challenge and tasks给定自然图片, 从中识别出特定物体。 待识别的物体有20类:personbird, cat, cow, dog, horse, sheepaeroplane, bicycle, b...转载 2018-03-08 11:22:11 · 779 阅读 · 0 评论 -
【机器学习】学习率策略
学习率策略学习率策略的设置是一个枚举类型typedef enum { CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM} learning_rate_policy;123这是在前面就提到的。我们现在来看看,这几个有什么区别(参考caffe源码)CONSTANT:学习率是一个固定的值learning_rateSTEP:是一种均匀分步策略learni...原创 2018-03-01 13:55:16 · 2156 阅读 · 0 评论 -
自动微分(Automatic Differentiation)简介
现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分。在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SGD等进行优化更新。手动实现过backprop算法的同学应该可以体会到其中的复杂性和易错性,一个好的框架应该可以很好地将这部分难点隐藏于用户视角,而自动微分技术恰好可以优雅解决这个问题。接下来我们将一起...转载 2018-03-16 14:09:53 · 773 阅读 · 0 评论 -
对抗样本和对抗网络
所谓对抗 样本是指将实际样本略加扰动而构造出的合成样本,对该样本,分类器非常容易将其类别判错,这意味着光滑性假设(相似的样本应该以很高的概率被判为同一类别)某种程度上被推翻了。Intriguing properties of neural networks, by Christian Szegedy at Google, et al,2014. 这篇论文应该是最早提出对抗样本概念的。论文指出,包括...转载 2018-03-19 16:56:32 · 1125 阅读 · 0 评论 -
2017年深度学习必读31篇论文
2017年即将擦肩而过,Kloud Strife在其博客上盘点了今年最值得关注的有关深度学习的论文,包括架构/模型、生成模型、强化学习、SGD & 优化及理论等各个方面,有些论文名扬四海,有些论文则非常低调。一如既往,首先,标准免责声明适用,因为今年仅与GAN有关的论文就超过1660篇。我肯定会有疏漏,试图缩减到每两周一篇论文,包含了Imperial Deep Learning Readi...转载 2018-03-23 11:12:30 · 1427 阅读 · 0 评论 -
深度学习(二十三)Maxout网络学习
原文地址:http://blog.csdn.net/hjimce/article/details/50414467作者:hjimce一、相关理论 本篇博文主要讲解2013年,ICML上的一篇文献:《Maxout Networks》,这个算法我目前也很少用到,个人感觉最主要的原因应该是这个算法参数个数会成k倍增加(k是maxout的一个参数),不过没关系,对于我们来说知识积累才是最重要的,指不...转载 2018-03-19 17:59:53 · 474 阅读 · 0 评论 -
Asimov人工智能研究所-神经网络结构表
新的神经网络结构不断涌现,我们很难一一掌握。哪怕一开始只是记住所有的简称( DCIGN,BiLSTM,DCGAN ),也会让同学们吃不消。所以我决定写篇文章归纳归纳,各种神经网络结构。它们大部分都是神经网络,也有一些是完全不同的结构。虽然所有结构说起来都是新颖而独特的,但当我画出结点的结构图时……它们之间的内在联系显得更有意思。总表当我们在画节点图的时候发现了一个问题:这些图并没有展示出来这些神经...转载 2018-03-21 11:30:08 · 996 阅读 · 0 评论 -
深度学习——FCN, SegNet, DeconvNet, DeepLab, ENet, GCN
Grab cutGrab cut是微软剑桥研究院于2004年提出的著名交互式图像语义分割方法。与N-cut一样,grab cut同样也是基于图划分,不过grab cut是其改进版本,可以看作迭代式的语义分割算法。Grab cut利用了图像中的纹理(颜色)信息和边界(反差)信息,只要少量的用户交互操作即可得到比较好的前后背景分割结果。在Grab cut中,RGB图像的前景和背景分别用一个高斯混合模型...转载 2018-03-21 15:01:00 · 1903 阅读 · 0 评论 -
基于Pytorch的FCN实现
https://zhuanlan.zhihu.com/p/32506912原创 2018-03-21 16:58:43 · 13427 阅读 · 0 评论 -
浅谈流形学习
作者:暮暮迷了路链接:https://www.zhihu.com/question/24015486/answer/194284643来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。最高票解释的很学术~我就说个定性而非定量的解释。流形学习的观点是认为,我们所能观察到的数据实际上是由一个低维流形映射到高维空间上的。由于数据内部特征的限制,一些高维中的数据会产生维度上的冗...转载 2018-03-22 13:47:56 · 1499 阅读 · 0 评论