bzoj1080: [SCOI2008]劣质编码

正解我不太懂,最后使用clj的神暴力水过去了,总而言之我还是太弱了

typedef vector<int> VI;
const int N = 40;
map<VI, int> Hash;
queue<VI> Q;
int n;
string Dat[N];

inline void Input() {
	scanf("%d", &n);
	Rep(i, n) cin >> Dat[i];
}

inline void write(int Ans) {
	printf("%d\n", Ans);
	exit(0);
}

inline void Solve() {
	VI u, v, T;
	Rep(i, n)
		if(Dat[i] == "") write(0);
		else u.pub(i << 6);
	Hash[u] = 0;
	for(Q.push(u); sz(Q); ) {
		u = Q.front(), Q.pop();
		int H = Hash[u], Cnt;
		For(C, '0', '1') {
			Cnt = 0, v.clear();
			Rep(i, sz(u)) {
				int Which = u[i] >> 6, Where = u[i] & 63;
				if(Dat[Which][Where] ^ C) continue;
				if(++Where == sz(Dat[Which])) {
					++Cnt;
					Rep(j, n) v.pub(j << 6);
				} else v.pub(Which << 6 | Where);
			}
			if(Cnt >= 3) write(H + 1);
			
			sort(all(v)), T.clear();
			Rep(i, sz(v))
				if(i < 3 || v[i] ^ v[i - 3]) T.pub(v[i]);
			
			int &TH = Hash[T];
			if(sz(T) && !TH) TH = H + 1, Q.push(T);
		}
	}
	write(-1);
}

int main() {
	#ifndef ONLINE_JUDGE
	SETIO("1080");
	#endif
	Input();
	Solve();
	return 0;
}

 

内容概要:本文档详述了一个基于 Matlab 平台实现的 GA-LSSVM(遗传算法优化最小二乘支持向量机)多输入单输出回归预测项目。该项目首先介绍了回归分析的需求及其面临的挑战,随后提出了将遗传算法与 LSSVM 结合的方法来优化回归模型,解决了 LSSVM 模型对参数选择的依赖,提高预测精度。具体实现步骤包括数据预处理、参数优化、LSSVM 模型构建、模型训练与评估等,并附有详细的程序设计和 GUI 实现代码。文中还展示了 GA-LSSVM 在多种应用场景中的优越性能,如工业生产、金融市场、环境监测、医疗诊断等。通过实际数据实验,验证了模型的有效性和优越性。 适合人群:从事数据分析、机器学习及相关领域的研究人员和工程师,特别是关注高精度回归预测的研究者或从业者。 使用场景及目标:此资源适用于需要精准回归预测的实际工程项目或科研活动中,如预测股价波动、监控设备状态、评估医疗健康指标等。目的是提高现有模型的泛化能力,自动优化参数选择,提升预测准确度并适应多样化输入数据。 其他说明:项目代码结构清晰,附带详细的说明文档和示例,方便理解和二次开发。同时提供了多种优化策略以应对不同类型的数据和场景限制。文中提到的模型具有良好的可扩展性,未来可以通过与其他先进技术如深度学习集成进一步改善预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值