机器学习算法基础第三节

本文深入探讨了决策树的原理,包括信息熵、信息增益和剪枝等概念,指出其易理解、可视化及对数据预处理需求低的优点,但也提及过拟合的风险。接着,介绍了随机森林这一集成学习方法,解释了其通过多个独立决策树的组合提高预测准确性的机制,强调了随机森林在大数据集和高维特征处理上的优势,以及对特征重要性的评估。同时,随机森林能够处理缺失值问题,具有出色的准确率。
摘要由CSDN通过智能技术生成

决策树 

信息量越大 信息熵越大

信息和消除不确定性是相联系的

决策树的划分依据是信息增益  不确定性

sklearn选择基尼系数作为分类依据,该系数划分更加仔细

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)

决策树的结构,本地保存

sklearn.tree.export_graphviz() 该函数能够导出DOT格式 tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])

决策树的优点:简单的理解和解释,树木可视化,需要很少的数据准备,其他技术通常需要数据归一化

缺点:决策树过拟合 树的建立太深

改进:剪枝cart算法(决策树API中已经实现

                随机森林

集成学习方法-随机森林

集成学习方法通过建立几个模型组合的来解决单一预测问题,生成多个分类器、模型,各自独立地学习和做出预测,这些预测最后结合成单个预测,因此优于任何一个单分类的预测

随机森林是一个包含多个决策树的分类器,并且其输出的类别是有个别树输出的类别的众数而定。

随机森林建立多个决策树的过程:

单个树建立过程(1)随机在N个样本中选择一个,重复N次,样本有可能重复;(2)随机在M个特征当中选择m个特征,

随机有放回的抽样 即bootstrap抽样

随机森林API:class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None)

随机森林优点:在当前所有算法中,具有极好的准确率;能够有效地运行在大数据集上 ;能够处理具有高维特征的输入样本,而且不需要降维 ;能够评估各个特征在分类问题上的重要性 ;对于缺省值问题也能够获得很好得结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值