问题:
图的m着色问题。给定无向连通图G和m种颜色,用这些颜色给图的顶点着色,每个顶点一种颜色。如果要求G的每条边的两个顶点着不同颜色。给出所有可能的着色方案;如果不存在,则回答“NO”。
解析:
在填写每一个顶点的颜色时检查与相邻已填顶点的颜色是否相同。如果不同,则填上;如果相同(冲突),则另选一种;如果已没有颜色可供选择,则回溯到上一顶点。重复这一过程,直到所有顶点的颜色都已填上。
设计:
#include<iostream>
using namespace std;
#define MAX 100
int color[MAX];
int graph[MAX][MAX] = { 0 };
int n, m;
int cnt = 0;
bool isDiffColor(int index) {
for (int i = 0; i < n; i++) {
if (graph[index][i] == 1 && color[index] == color[i]) {
return false;
}
}
return true;
}
void backTracking(int index) {
if (index == n) {
for (int i = 0; i < n; i++) {
cout << color[i] << " ";
}
cnt++;
cout << endl;
}
else {
for (int j = 1; j <= m; j++) {
color[index] = j;
if (isDiffColor(index)) {
backTracking(index + 1);
}
color[index] = 0;
}
}
}
int main() {
cout << "请输入顶点数n和颜色数m:" ;
cin >> n >> m;
cout << "请输入无向连通图:" << endl;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
cin >> graph[i][j];
cout << "Answer:" << endl;
backTracking(0);
if (cnt == 0) {
cout << "No" << endl;
}
else {
cout << "着色方案有:" << cnt << "种" << endl;
}
}
分析:
时间复杂度为O(nm^n)。