含义
网络流,用于求一个源点到一个汇点的最大流量.
方法1 EK
先用bfs求出最短路,并记录下路径,之后找到路径上的流量最小的边的流量路径,并且让每条边都减去这个最小值,让它的反向边加上这个值(给它后悔的机会),当无法再找到到达汇点的路径时结束,此时所有最小流量之和即为答案.
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define C ch=getchar()
#define INF 0x3f3f3f3f
#define N 10010
#define M 101000
using namespace std;
int n,m,s,t,first[N],bb,ans,vis[N],last[N],wh[N],mn;
queue<int>que;
struct Bn
{
int next,to,quan;
} bn[M*2];
inline void add(int u,int v,int w)
{
bn[bb].to=v;
bn[bb].quan=w;
bn[bb].next=first[u];
first[u]=bb;
bb++;
}
inline void read(int &u)
{
char C;
u=0;
for(;ch<'0';C);
for(;ch>='0';C) u=u*10+ch-48;
}
int main()
{
memset(first,-1,sizeof(first));
register int i,p,q,o;
read(n),read(m),read(s),read(t);
for(i=1; i<=m; i++)
{
read(p);
read(q);
read(o);
add(p,q,o);
add(q,p,0);
}
last[s]=-1;
for(;;)
{
memset(vis,0,sizeof(vis));
for(;!que.empty();) que.pop();
que.push(s),vis[s]=1,mn=INF;
for(;!que.empty()&&!vis[t];)
{
q=que.front(),que.pop();
for(p=first[q];p!=-1&&!vis[t];p=bn[p].next)
{
if(!bn[p].quan||vis[bn[p].to]) continue;
vis[bn[p].to]=1;
last[bn[p].to]=q;
wh[bn[p].to]=p;
mn=min(mn,bn[p].quan);
que.push(bn[p].to);
}
}
if(!vis[t]) break;
ans+=mn;
for(p=t;p!=s;p=last[p])
{
bn[wh[p]].quan-=mn,bn[wh[p]^1].quan+=mn;
}
}
cout<<ans;
}
方法2 dinic
思路基本同上,多路增广,先用bfs记录每一个点的深度,再从源点开始dfs,若下一个点的深度是当前点的深度加一则可以继续搜下去(这样可以防止走错),之后每次加上最小流量,一直到bfs搜不出最短路为止.
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define INF 0x3f3f3f3f
#define N 10010
#define M 100100
using namespace std;
int n,m,s,t,bb,first[N],deep[N],ans;
struct Bn
{
int next,to,quan;
} bn[M*2];
queue<int>que;
inline void add(int u,int v,int w)
{
bn[bb].next=first[u];
bn[bb].to=v;
bn[bb].quan=w;
first[u]=bb;
bb++;
}
inline bool bfs()
{
int p,q;
memset(deep,0,sizeof(deep));
for(;!que.empty();que.pop());
que.push(s);
deep[s]=1;
for(; !que.empty();)
{
q=que.front();
que.pop();
for(p=first[q]; p!=-1; p=bn[p].next)
{
if(!bn[p].quan||deep[bn[p].to]) continue;
deep[bn[p].to]=deep[q]+1;
que.push(bn[p].to);
}
}
return deep[t];
}
int dfs(int now,int mn)
{
if(now==t)
{
return mn;
}
int p=first[now],res=0;
for(; p!=-1; p=bn[p].next)
{
if(deep[now]+1!=deep[bn[p].to]||!bn[p].quan) continue;
res=dfs(bn[p].to,min(bn[p].quan,mn));
if(res)
{
bn[p].quan-=res;
bn[p^1].quan+=res;
return res;
}
}
return 0;
}
int main()
{
memset(first,-1,sizeof(first));
int i,j,p,q,o;
cin>>n>>m>>s>>t;
for(i=1; i<=m; i++)
{
scanf("%d%d%d",&p,&q,&o);
add(p,q,o);
add(q,p,0);
}
for(; bfs();)
{
for(p=dfs(s,INF);p;ans+=p,p=dfs(s,INF));
}
cout<<ans;
}
当前弧优化
dinic在后来不断dfs时,可以发现扫过的边不会再扫第二边,因而在扫时可以记录一下上次扫到了哪里,下次从这个地方继续扫即可,可以大大优化.
代码
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define INF 0x3f3f3f3f
#define N 10100
using namespace std;
int n,m,bb,need[30][30],val[30][30],first[N],deep[N],tmp,s,t,dir[4][2]= {1,0,-1,0,0,-1,0,1},sum,ans,cur[N];
struct Bn
{
int next,to,quan;
} bn[200100];
queue<int>que;
inline void add(int u,int v,int w)
{
bn[bb].to=v;
bn[bb].quan=w;
bn[bb].next=first[u];
first[u]=bb;
bb++;
}
inline void adt(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
inline bool bfs()
{
int p,q;
for(;!que.empty();que.pop());
memset(deep,0,sizeof(deep));
deep[s]=1;
que.push(s);
for(;!que.empty();)
{
q=que.front();
que.pop();
for(p=first[q];p!=-1&&!deep[t];p=bn[p].next)
{
if(deep[bn[p].to]||!bn[p].quan) continue;
deep[bn[p].to]=deep[q]+1;
que.push(bn[p].to);
}
}
return deep[t];
}
int dfs(int now,int mn)
{
if(now==t)
{
return mn;
}
int res;
for(int &p=cur[now];p!=-1;p=bn[p].next)
{
if(deep[bn[p].to]!=deep[now]+1||!bn[p].quan) continue;
res=dfs(bn[p].to,min(bn[p].quan,mn));
if(res)
{
bn[p].quan-=res;
bn[p^1].quan+=res;
return res;
}
}
return 0;
}
int main()
{
memset(first,-1,sizeof(first));
register int i,j,p,q,k;
cin>>n>>m>>s>>t;
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&p,&q,&k);
adt(p,q,k);
}
for(;bfs();)
{
for(i=1;i<=n;i++) cur[i]=first[i];
for(k=dfs(s,INF);k;ans+=k,k=dfs(s,INF));
}
cout<<ans;
}