边双(以CodeForces - 652E Pursuit For Artifacts为例)

定义

若一张连通图中去掉任意一条边后仍然连通,则它是一个边双。

求法

可以发现,边双中不包含桥,因此将图中的桥去掉之后,剩下的图中的所有连通块都是边双。

例题(CodeForces - 652E Pursuit For Artifacts)

题意

给出一张无向图,一些边上有一个神器,每条边只能经过一次,问,从s走到t,能否顺便拿到至少一个神器。

做法

可以发现,如果走到一个边双中,那么可以经过这个边双的任意一条边后,从这个边双的任意一个点中走出来,也就意味着如果有一个神器在这个边双中,走到这个边双中的任意一点都可以拿到神器。
因此,可以将边双缩成一个点,这样原图会变成一棵由桥和边双组成的树,考虑一下经过的边双和桥中有无神器即可。

代码

#include<bits/stdc++.h> 
#define mid ((l+r)>>1)
#define N 300100
using namespace std;

int n,m,first[N],bb=1,dfn[N],low[N],tt,cnt,ss[N],fa[N],s,t;
bool bri[N],vis[N],ok[N];
struct Bn
{
    int to,next,sq;
} bn[N<<1];
vector<int>son[N],hv[N];

inline void add(int u,int v,int w)
{
    bb++;
    bn[bb].to=v;
    bn[bb].next=first[u];
    bn[bb].sq=w;
    first[u]=bb;
}

void dfs(int now,int last)
{
    dfn[now]=low[now]=++tt;
    int p,q;
    for(p=first[now];p!=-1;p=bn[p].next)
    {
        if(bn[p].to==last || dfn[bn[p].to]>dfn[now]) continue;
        if(dfn[bn[p].to])
        {
            low[now]=min(low[now],dfn[bn[p].to]);
        }
        else
        {
            dfs(bn[p].to,now);
            low[now]=min(low[now],low[bn[p].to]);
            if(low[bn[p].to]>dfn[now])
            {
                bri[p/2]=1;
            }
        }
    }
}

void Dfs(int now,int last)
{
    int p,q;
    vis[now]=1;
    fa[now]=cnt;
    ss[now]=cnt;
    for(p=first[now];p!=-1;p=bn[p].next)
    {
        if(bn[p].to==last || bri[p/2] || vis[bn[p].to]) continue;
        Dfs(bn[p].to,now);
    }
}

void fd(int now,int last,bool have)
{
    int i,j;
    have|=ok[now];
    if(now==fa[t])
    {
        have?puts("YES"):puts("NO");
        exit(0);
    }
    for(i=0;i<son[now].size();i++)
    {
        if(son[now][i]==last) continue;
        fd(son[now][i],now,have|hv[now][i]);
    }
}

int main()
{
    memset(first,-1,sizeof(first));
    int i,j,p,q,o;
    cin>>n>>m;
    for(i=1; i<=m; i++)
    {
        scanf("%d%d%d",&p,&q,&o);
        add(p,q,o),add(q,p,o);
    }
    dfs(1,-1);
    for(i=1;i<=n;i++)
    {
        if(vis[i]) continue;
        cnt++;
        Dfs(i,-1);
    }
    for(i=1;i<=m;i++)
    {
        if(!bri[i]) continue;
        p=ss[bn[i*2].to],q=ss[bn[i*2+1].to];
        son[p].push_back(q);
        son[q].push_back(p);
        hv[p].push_back(bn[i*2].sq);
        hv[q].push_back(bn[i*2].sq);
    }
    for(i=1;i<=m;i++)
    {
        if(bri[i]) continue;
        ok[ss[bn[i*2].to]]|=bn[i*2].sq;
    }
    cin>>s>>t;
    fd(fa[s],-1,0);
    puts("666");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值